
Approximate String Matching using Backtracking

over Suffix Arrays∗

Mohammadreza Ghodsi†

Abstract

We describe a simple backtracking algorithm that finds approximate

matches of a pattern in a large indexed text. This algorithm theoretically

takes sublinear time in the length of the text. We prove a lemma that

helps us to prune a significant number of branches of search in practice.

We show an implementation of a variant of this algorithm and that is used

to find similar regions between sequences of two bacterial genomes.

1 Introduction

The approximate string matching problem is to find an approximate occurrence
of a relatively short string called pattern in a long string called text. The pattern
P and text T are strings of characters from a finite alphabet Σ. We denote the
length of T and P and the size of Σ by n, m and σ.

The approximate occurrence can be defined using a variety of distance met-
rics over strings. A few popular metrics are Hamming distance, unit-cost edit
distance and general edit distance based on a substitution cost matrix. Edit
distance seems harder to work with that Hamming distance as for example the-
oretical results show embedding the edit distance into L1 requires a distortion
of Ω (log n) [3], and practical techniques that work well for Hamming distance
such as spaced seeds [8] cannot be directly applied to edit distance.

An string matching problem is called offline if we are allowed to pre-process
the text and make an index data structure, and online if we are not allowed to
pre-process the text. Table 1 contains an overview of major results for different
versions of the problem. The exact alignment problems can be solved optimally.
There has been a lot of research into online approximate matching problem. For
a nice overview of online algorithms see [11].

Two of the most famous index data structures used for large strings are
inverted k-mer index and family of indexes related to suffix trees (including

∗This paper is submitted to Computer Science Department of University of Maryland at
College Park as a scholarly paper to partially satisfy requirements for Masters degree in Spring
2009 academic semester.

†Department of Computer Science, University of Maryland, College Park, MD 20742, USA.
Email: ghodsi@cs.umd.edu

1

Online Offline
Exact KMP O(n + m) Suffix Tree O(m)
Approximate Dynamic Programming

O(n·m), Landau+Vishkin
O(k · n) [6]

Myers [10],
Navarro+Baeza-Yates [12]
O(nγ log n), Ukkon-
nen [13] O(mk+3σk)

Table 1: Overview of major results for different versions of string matching
problem.

most importantly suffix arrays and Burrows-Wheeler index). Inverted indexes
are very fast in practice but are less suited for approximate matching although
they have been used for this purpose [10].

In this paper we will focus on offline k-difference problem: Find all substrings
Q of T such that the unit-cost edit distance between P and Q is ≤ k. In practice
our algorithm can easily and efficiently be generalized to use a substitution cost
matrix, although some of our theoretical running time bounds depend on the
unit-cost model.

We will focus on the case that logσ n ≤ m ≪ n. If m < logσ n for sufficiently
random like sequences many occurrences will happen by mere chance. For very
large m the pattern can be broken into smaller pieces and each piece can be
searched for independently.

1.1 Application Biological Sequences

There are two primary types of biological sequences of interest: DNA sequences
and amino acid sequences. DNA sequences are strings over 4 alphabet ΣDNA =
{A, T, C, G}. Mutations will cause substitutions, insertions and deletions in
random positions of the DNA. Unit-cost edit distance captures the evolutionary
distance of two sequences quite well. On the other hand protein sequences are
from an alphabet of 20 amino acids. Some of these amino acids are quite similar
and it is possible that two highly similar proteins to have quite different amino
acid sequence and totally different DNA coding sequence. For this reason in
sequence alignment of amino acids, a substitution matrix is used that describes
the rate at which one amino acid changes to another over time.

Approximate search in amino acid databases is arguably more difficult in
practice. For instance seed and extend algorithms like BLAST will be forced to
use a much shorter seed length and will therefore have lower sensitivity and lower
specificity. Large alphabets also pose a problem for algorithms that generate
all strings similar to query and use and exact searching algorithm to find them
(e.g. that of Myers [10]) since there could be lots of different sequences ’similar’
to query.

Another important property of non-coding DNA sequences is that they re-
semble random sequence in the sense that for any given very short string of
characters the number of times that it appears in DNA is close to the number

2

s0

s1

s2

s3

s4

s5s6
$

A

B

N

$

N A

$

N A $

A N A N A $

A $

N
A $

Figure 1: Sample Suffix Trie for string ’BANANA’

0 B
1 A
2 N
3 A
4 N
5 A
6 $

(a) String in memory

0 6 $
1 5 A$
2 3 ANA$
3 1 ANANA$
4 0 BANANA$
5 4 NA$
6 2 NANA$

(b) Suffix array in memory

Figure 2: Sample Suffix Array for string ’BANANA’

expected from a random sequence. This is in contrast to natural language text
which is unlikely to contain certain sequence of letters.

To our knowledge two computational biology software use similar techniques:
Bowtie [7] uses a Burrows-Wheeler index of the human (and other) genome
and can align short reads with few errors to the reference using backtracking.
Vmatch [5] is a closed source software that uses suffix arrays index (among
others) and is able to perform approximate alignments.

2 Algorithm

2.1 DFS in Suffix Trie

It is easier to explain the algorithm using Suffix Trie data structure1. Consider
a suffix trie of text as illustrated in Figure 1. An exact search algorithm will
start at the root and follow corresponding character from pattern at each node.
In case of approximate search however we may have to follow links labeled with
characters that are different from the one that appear in the text.

A simple DFS traversal of this tree spells out all the suffixes of text in
sorted order one character at a time. The general backtracking policy is to
stop following down branches from an internal node as soon as the edit distance
between the string corresponding to that node and any prefix of query keyword

1This representation may require ω(n) space.

3

is more than an specific threshold. The edit distance can be computed by
maintaining the column of the dynamic programming matrix corresponding to
the cost of aligning any prefix of query to the substring represented by each
internal node.

The main algorithm is as follows: For every substring of P of length l (called
a keyword Wp), search for an approximate occurrence of Wp in suffix array of
T using DFS with backtracking. The simplest backtracking strategy is to stop
as soon as the edit distance of current node’s string and any prefix of query is
greater than k. However for most practical texts the top levels of the suffix trie
are nearly full (each node has nearly σ children), whereas deep nodes of the trie
have about one child on average. The simple backtracking strategy will spend
lots of time traversing top levels of the trie allowing many errors in the first few
characters of the alignment. The main intuition is that we can look for words
that do not have many differences on the left.

The main Lemma 1 shows that for any occurrence of P in T there exists a
keyword that matches T in such a way that from left to right the number of
editions necessary to match Wp to T is never more than k

m−l
times the length

of the prefix.
In practice we use logσ n ≤ l ≤ c logσ n, Since for the shorter keywords we

can expect better matches with fewer errors and still avoid random matches in
expectation.

After finding the keyword hits one should verify that they can be extended
to hits of length m. We will ignore this post-processing here and assume for
sufficiently large keyword length l ≥ logσ n the number of false positives are
small enough that the running time will be dominated by the keyword search
phase.

Lemma 1. If P matches Q (e.g. a substring of T) with ≤ k differences, then
for any l, 1 ≤ l < m there exists WP a substing of P of length l and WQ a
substring of Q such that for every prefix of WP of length j, WP [1..j] matches

some prefix WQ with ≤
(

j · k
m−l

)

differences.

Proof. let f(i) be a the minimum edit distance of P [1..i] from any prefix of
Q. See Figure 3. It is easy to see that f is a non-decreasing function, and by
definition f(m) ≤ k and f(0) = 0.

As a way of contradiction assume for all i = 0 . . . (m − l), there exists j ∈

{1 . . . l} such that f(i + j) − f(i) >
(

j · k
m−l

)

.

In particular there exists j1 such that f(0 + j1) > f(0) +
(

j1 ·
k

m−l

)

, and

there exists j2 such that f(0 + j1 + j2) > f(0) +
(

j1 ·
k

m−l

)

+
(

j2 ·
k

m−l

)

, and

4

l

m

kf(i)

Figure 3: For any occurrence of P with ≤ k differences in T , define f(i) as the
minimum edit distance of P [1..i] from any prefix of the occurrence.

so on up to some m − l < 0 + j1 + j2 + . . . + jz ≤ m.

f(m) ≥ f(0 + j1 + j2 + . . . + jz)

> f(0) +

(

j1 ·
k

m − l

)

+

(

j2 ·
k

m − l

)

+ . . . +

(

jz ·
k

m − l

)

= 0 + (j1 + j2 + . . . + jz) ·

(

k

m − l

)

≥ (m − l) ·

(

k

m − l

)

= k

Which implies f(m) > k which is a contradiction.

2.2 Adapting the Algorithm to Suffix Arrays

A suffix array [9] is the list of indexes all suffixes of a string in lexicographically
sorted order. A suffix array can be built in linear time 2 and occupies n log2 n

bits. Even though theoretically asymptotical memory requirements of suffix
arrays and suffix trees are similar, in practice highly optimized implementations
of suffix tree require over 10 bytes of memory per input character [4] whereas
basic suffix array requires 4+1 3 bytes. Space requirements of suffix arrays can
be further reduced to O(n) bits using compressed suffix arrays. Finally it has
been shown that by storing some auxiliary tables, Enhanced Suffix Arrays [1]

2Assuming log n is smaller than the word size of the machine and operations on them takes
constant time

3Assuming length of input string can be stored in a 32 bit integer.

5

can be used to simulate any type of traversal of suffix trees in the same time
complexity.

Our algorithm over suffix arrays is inspired by the simplest exact search
algorithm on a suffix array which is in essence a binary search. The backtracking
algorithm described over suffix tries can be adapted to work on suffix arrays with
a log2 n factor increase in running time as will be shown in Lemma 2. The main
algorithm is as follows: We maintain a window of the suffix array and the depth
that we have matched so far, If the character at this depth from both sides of
current window match, there is only one edge to follow down in this window,
otherwise we simply divide the window in two equal windows and recursively
find the matches on both halves.

Lemma 2. The number of calls to the recursive suffix array search function is
at most log2 n times the number of suffix trie nodes visited by the backtracking
DFS algorithm.

Proof. let p be the number of nodes visited by the suffix trie backtracking DFS
algorithm. The key point is to note that each internal node of the suffix trie
corresponds to a window [il . . . ir] on the suffix array. We need to bound the
number of times we need to cut the suffix array of length n in half that is needed
to realize any partitioning of the suffix array in p windows, denoted by g (n, p).

g(n, p) is given by the following recurrence:

g(n, p) =

{

0, n = 1 or p = 0
g

(

n
2
, pl

)

+ g
(

n
2
, pr

)

+ 1, otherwise, where p ≥ pl + pr

We will prove by induction that g(n, p) ≤ p log2 n. Base case is trivial. For the
induction step we have

g(n, p) = g
(n

2
, pl

)

+ g
(n

2
, pr

)

+ 1

≤ pl log2

n

2
+ pr log2

n

2
+ 1

= (pl + pr) log2

n

2
+ 1

≤ p log2

n

2
+ 1

= p log2 n − p + 1

≤ p log2 n

3 Analysis and Preliminary Experimental Re-

sults

We will now prove the theoretical sublinear running time of our algorithm. Our
time essentially matches that of Ukkonen [13].

6

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

’mummer.out.points’ using 2:1

(a) MUMmer exact 20bp

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

’strepto-cmp20-1.txt’

(b) Approximate alignment 20bp with 1 error

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

’mummer64.out.points’ using 2:1

(c) MUMmer exact 64bp

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

’strepto-repeats015-64.txt’

(d) Approximate alignment 85% similarity 64bp

Figure 4: Visual comparison with MUMmer exact alignment. Each + is a match
at the corresponding coordinates in the genomes

Lemma 3. Let l be the length of keyword and d = l · k
m−l

be the maximum
difference allowed for a keyword. Then the keyword search algorithm will take
O(mld+2σd log2 n) ⊆ O(mk+3σk log2 n) ⊆ o(n).

Proof. It is again easier to calculate the running time if we consider the algo-
rithm over a suffix trie. Consider any internal node of the suffix trie that is
visited during the execution of this algorithm. The string represented by the
path from the root to such internal node should be a prefix of a string that
matches keyword with at most d differences. But total number of such strings
is O(ldσd). Therefore the total number of viable prefixes is O(ld+1σd).

If the alignment score is computed by maintaining the column of dynamic
programming table the work for each node of the suffix trie is l (the height of a
column of DP). By Lemma 2 our algorithm works on suffix arrays with a factor
of log2 n slowdown in running time. Also there are O(m) keywords to search
for in each pattern. Hence the total running time is O(mld+2σd log2 n).

To examine the practical applicability of this algorithm we have implemented
a variant of this algorithm in C++. There are two main differences between this

7

implementation and the algorithm described above. First instead of maintaining
a dynamic programming row we exhaustively search all possible edit operations
at each internal node. Second this implementation does an all-vs-all search
for any similar substrings between two fairly long sequences. The main search
function

void s a s e a r c h ed i t (int l1 , int r1 , int pos1 ,
int l2 , int r2 , int pos2 ,
int d i f f)

recursively finds all approximate matches between two windows in the two suffix
arrays assuming the difference between the shared prefix of suffixes in first win-
dow and shared prefix of suffixes in the second window is given. The complete
implementation of this function is listed in Appendix A to show the compactness
of the implementation.

Figure 3 shows the results of running the algorithm on full sequence of
genomes of two bacterial organisms: Streptococcus pneumoniae and Strepto-
coccus thermophilus, in comparison to the exact algorithm of MUMmer [2]. By
default MUMmer finds exact matches of length 20 between the two genomes, as
can be seen in Figure 4(a). For comparison have included approximate matches
of length 20 with one error Figure 4(b). Note that the number of false posi-
tives increases significantly if we allow just one error in a 20 base pair match.
To decrease the number of false positives one can of course increase the length
of the match, an exact match of 64 bases is shown in Figure 4(c). It is clear
that we have decreased sensitivity considerably by increasing the length of the
match. Finally our algorithm which looks for approximate (85%) matches of
length 64 bases is shown in Figure 4(d). It can be seen that our algorithm has
simultaneously better sensitivity and better specificity that all variations above.

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[2] AL Delcher, S. Kasif, RD Fleischmann, J. Peterson, O. White, and
SL Salzberg. Alignment of whole genomes. Nucleic Acids Research,
27(11):2369, 1999.

[3] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embed-
dings into l1. In SODA ’06: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 1010–1017, New York, NY,
USA, 2006. ACM.

[4] S. Kurtz. Reducing the space requirement of suffix trees. Software-Practice
and Experience, 29(13):1149–71, 1999.

[5] S. Kurtz. The Vmatch large scale sequence analysis software. Ref Type:
Computer Program, pages 4–12, 2003.

8

[6] GM Landau and U. Vishkin. Fast parallel and serial approximate string
matching. Journal of Algorithms, 10(2):157–169, 1989.

[7] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3):R25, 2009.

[8] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive
homology search, 2002.

[9] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. In Proceedings of the first annual ACM-SIAM symposium on Dis-
crete algorithms, pages 319–327. Society for Industrial and Applied Math-
ematics Philadelphia, PA, USA, 1990.

[10] EW Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12(4):345–374, 1994.

[11] G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys (CSUR), 33(1):31–88, 2001.

[12] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate
string matching. Journal of Discrete Algorithms, 1(1):205–239, 2000.

[13] E. Ukkonen. Approximate string-matching over suffix trees. Lecture notes
in computer science, pages 228–228, 1993.

9

A All-vs-All Search Source Code

const f loat EPSILON = 0 . 1 5 ;
const int MIN LENGTH = 40;

char ∗ s1 , ∗ s2 ;
int ∗ s u f f i x 1 , ∗ s u f f i x 2 ;

set<pai r<int , int> > r e s u l t s ;

void s a s e a r c h ed i t (int l1 , int r1 , int pos1 ,
int l2 , int r2 , int pos2 ,
int d i f f)

{
i f (d i f f > min(pos1 , pos2) ∗ EPSILON)

return ;

i f (max(pos1 , pos2) >= MIN LENGTH){
for (int i = l 1 ; i <= r1 ; ++i)

for (int j = l 2 ; j <= r2 ; ++j)
r e s u l t s . i n s e r t (make pair (s u f f i x 1 [i] , s u f f i x 2 [j])) ;

return ;
}

i f (s1 [s u f f i x 1 [l 1]+pos1] != s1 [s u f f i x 1 [r1] + pos1]) {
int mid1 = (l 1 + r1)/ 2 ;
s a s e a r c h ed i t (l 1 , mid1 , pos1 , l2 , r2 , pos2 , d i f f) ;
s a s e a r c h ed i t (mid1 + 1 , r1 , pos1 , l2 , r2 , pos2 , d i f f) ;
return ;

} else i f (s2 [s u f f i x 2 [l 2] + pos2] != s2 [s u f f i x 2 [r2] + pos2]) {
int mid2 = (l 2 + r2) / 2 ;
s a s e a r c h ed i t (l1 , r1 , pos1 , l 2 , mid2 , pos2 , d i f f) ;
s a s e a r c h ed i t (l1 , r1 , pos1 , mid2 + 1 , r2 , pos2 , d i f f) ;
return ;

} else {

i f ((s1 [s u f f i x 1 [l 1] + pos1] == ’ $ ’) | |
(s2 [s u f f i x 2 [l 2] + pos2] == ’ $ ’))

return ;

// match/ mismatch
i f (s1 [s u f f i x 1 [l 1] + pos1] == s2 [s u f f i x 2 [l 2] + pos2])

s a s e a r c h ed i t (l1 , r1 , pos1 + 1 , l2 , r2 , pos2 + 1 , d i f f) ;
else

s a s e a r c h ed i t (l1 , r1 , pos1 + 1 , l2 , r2 , pos2 + 1 , d i f f + 1) ;

// i n s e r t / d e l e t e
s a s e a r c h ed i t (l1 , r1 , pos1 + 1 , l2 , r2 , pos2 , d i f f + 1) ;
s a s e a r c h ed i t (l1 , r1 , pos1 , l2 , r2 , pos2 + 1 , d i f f + 1) ;
return ;

}
}

10

