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ABSTRACT
Programming allows children to acquire problem-solving skills
that will be useful to them throughout their life. Tools
that have successfully attracted children to programming in
the past are now outdated because children’s interests have
evolved with the technology. It has become more important
to provide real-world experience to improve children’s abil-
ity in solving real problems. As our previous studies with
children suggest, cooking is appealing to both girls and boys.
However, the challenge is to come up with a formal speci-
fication of cooking that is precise and complete, but still is
an age-appropriate and fun activity for children. Therefore,
this paper attempts to formalize an event-based cooking lan-
guage using formal specification methods.

1. INTRODUCTION
Programming allows children to acquire problem-solving

skills that will be useful to them throughout their life. With
this objective in mind, there are many tools developed to
teach programming in the early ages of childhood [14, 15,
19]. These languages were based on the idea of moving an
object character, which is capable of responding to certain
commands, in a finite spatial environment. Via gathering
sensor data from the environment, the object could only do
very simple actions on the intersection points of some co-
ordinate system to accomplish a predefined goal. Children
had to program this character with a limited set of func-
tions by taking into account the unwanted states and the
constraints on the system. Later, newer versions of these
languages were released to mitigate the effects of changing
programming paradigms (e.g. object-oriented, event-driven
languages).

Although all of these tools have been successful in terms
of attracting children to programming in the past, they have
now become outdated since children’s interests also evolved
with the technology. Nowadays, children like to have more
hi-tech toys that are capable of doing more complicated
things than simple moving, drawing, or sounds [1, 2] and
programming should allow children to explore these scenar-
ios as well. Therefore, novel tools have appeared [6, 12] that
extended the idea and enabled children to move into the
3D world. However, the theme have remained the same –
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that there is a character who moves with given commands
in some environment. The basic set of actions and their
arguments were still similar to their older counterparts and
because usually such instructions only include numbers and
geometric terms, their capabilities were limited to teaching
mathematical concepts rather than challenging children to
solve a real-world problem.

Our previous studies with children showed that cooking
is appealing to both girls and boys when provided with an
interesting recipe to prepare [21]. In these studies, children
were able to come up with the correct recipe and enjoy their
preparations in a collaborative programming environment.
As opposed to previous approaches, in real-life, children can-
not cook without adult guidance and a programming tool
can levitate their creativity by giving them such an oppor-
tunity. Advantages of using cooking to teach programming
are: (i) recipes have an inherent structure similar to pro-
grams and concepts that are available in programming lan-
guages (e.g. looping, branching), (ii) cooking necessitates
an understanding of mathematical concepts such as mea-
surements, (iii) directions impose constraints in terms of
time and order, (iv) recipes include objects (e.g. ingredi-
ents, utensils), (v) it is possible to parallel program multiple
cooks, (vi) cooking is obviously a real-life experience.

Cooking is appealing to children [10] but we believe the
following are some reasons why it was not used in the liter-
ature to teach programming. First of all, the core directions
in cooking are far more complex in nature than simple mov-
ing instructions. Each direction’s pre- and post-conditions
have to take into account various situations not necessarily
sensed with a single action. Thus, it is a non-trivial task
to simplify the constraints of the environment to an age-
appropriate level as it is with a coordinate system. Second,
the terminology needs to be very precise. For example, here
is an example from a children’s cookbook [13]:

• Blend: to mix foods together until smooth.
• Stir: to continuously mix food with spoon.
• Mix: to stir two or more ingredients together until they

are evenly combined.

The problem here is that blend and stir are not easy to differ-
entiate; stirring looks like a special type of blending action
since it uses a specific tool, however, looking at the outcomes
of these actions, blending can be considered as a subclass of
stirring actions because there are cases in which the food is
left without being smooth enough. Apart from that, mix and
stir are defined in terms of each other and this is ambiguous.
Rather than raising children’s understanding and problem-
solving skills, such ambiguities may confuse children in the
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long run. Finally, closely related to the terminology issue is
that there are various ambiguous directions in such recipes
[11]. Consider the following instance, which in each step
refers to one or some of the previous steps but there is no
predefined structure:

1. sprinkle flour on board
2. roll dough
3. put on baking tray
4. add 1 tablespoon tomato sauce
5. spread on dough
6. add 3 zucchini slices
7. add 3 mushroom slices
8. sprinkle cheeses
9. bake 20 minutes

10. EAT

For example, there is an implicit assumption that the reader
understands that the dough will be rolled on the floured
board, the rolled dough will be put on the baking tray, etc.
This is not easy to parse for a computer program and makes
it difficult to follow the arguments and the return values
of functions after a certain number of steps, like in the fol-
lowing sequence: on the spread dough add zucchini, to the
dough with zucchini add mushroom, sprinkle cheeses to the
dough with mushroom and finally, bake the cheese-dough.
Because the inputs and outputs are not clear from the recipe,
it looks as if it can be reordered without any problem, how-
ever, a recipe is strictly order-dependent. Moreover, some
instructions have overloaded definitions, e.g. sprinkle can
be called with or without a board that is not immediately
apparent to the reader. The propositions are used inter-
changeably in some function calls above as on is used both
before an ingredient and a tool. The usage of ingredients
and measurements are not consistent either; note the use
of 1 tablespoon (natural number & measure together) and 3
(single natural number).

As these disadvantages suggest, the challenge is to come
up with a formal specification of cooking that is precise and
complete but still is an age-appropriate and fun activity for
children. In this paper, we attempt to formalize an event-
based cooking language using formal specification methods.
Our contributions are twofold:

1. We provide an abstract Z [20, 23] specification of a
kitchen environment. This specification is used to rep-
resent the state of the world and the operations defined
on it.

2. We then, attempt to ensure that some constraints on
this system are not violated. For that, we convert our
Z specification into a model that can be put into the
Alloy Analyzer [9] for fully automatic analysis.

The rest of the paper is organized as follows. First, we
present previously designed languages in detail. Second, we
show our full Z specification of the kitchen environment.
Third, we explain our Alloy model definition. Then, we
discuss the results and implications of our design. Finally,
we conclude with future work.

2. RELATED WORK
Since language design for novices is a widely studied topic,

there are many such examples in the history. One approach
is to design a small and simple language called mini-language
to teach basic programming. A common characteristic of

such languages is that the user controls an actor in a micro-
world.

The most well-known example of a mini-language that
is accessible to children is the Logo programming language
[14]. The Logo turtle is a simulated actor in a two-dimensional
graphical world. Logo introduces programming through mak-
ing the turtle draw simple pictures; for example, “forward
10,” makes the turtle move in its forward direction. Starlogo
[17], Leogo [5], and MultiLogo [16] are some versions based
on the original Logo to introduce different paradigms in pro-
gramming. Karel the Robot [15] is another most widely-used
mini-language for beginners. Karel is a robot that lives in a
simple grid-world that has streets in east-west, and avenues
in north-south directions. There are also immovable walls
and beepers. Karel can move, turn, turn itself off, and sense
nearby walls and beepers. Karel++, Karel J Robot, J. Karel
are variants of this mini-language that are used as introduc-
tions to different programming languages. Yet another one is
the Jeroo [19] mini-language for introducing object-oriented
programming. Jeroo is a rare mammal whose primary food
source is the large Winsum flower. The Jeroos hop about
the Santong island to pick and plant flowers. At the same
time, they must avoid the water and evade or disable nets
set by hunters. There are many other mini-languages that
intend to teach programming to novices [3, 22]. Although
our approach can be classified as a mini-language, we model
a real-world scenario which is more complex than a simple
grid micro-world. In comparison, the control commands re-
quire a deeper understanding than a micro-world command.
The actors themselves are humans rather than robots or an-
imals. There is no explicit mission to accomplish as in these
scenarios and the end result (the dish) can be appreciated
by everyone. We therefore, try to bring more realism to
enhance novices’ problem-solving skills.

As these shortcomings in modeling real-world phenomenon
were observed by the language designers, they integrated
new approaches to the design. Alice [6] and Scratch [12]
are two recent and popular tools such that the user is given
more freedom in terms of designing their models. Alice sup-
ports building 3D virtual worlds like short animated movies
or games while Scratch makes it easy to create interactive
stories, animations, games, music, and art. The features of
the aforementioned mini-languages remain unaffected, i.e.
the same mathematical and geometric concepts are still em-
ployed, but modeling has become more important. A ma-
jor drawback is that the focus of children shifts from the
primary goal of learning programming to designing better
models and sprites when they get involved with the details
of such a full-featured programming environment. Flexibil-
ity is important for extensibility, however, we are interested
in teaching programming to kids. Thus, we take the ap-
proach of designing a novel mini-language that is based on
a metaphor that is closely related to a real-world scenario
with a target novice audience in a wider age range including
younger children.

There are some cooking systems available for children.
One of them is the Cooking Mama [7] game developed for
the Nintendo. In particular, it is a cooking simulation in
which dishes are prepared by completing at least two short
mini-games, representing steps in the meal preparation pro-
cess. Players use the Wii Remote to mimic real-life cook-
ing movements. The player’s performance is scored based
on how quickly and accurately tasks are performed. The

2



game supports both single-, multi-player modes. However,
the reviewers comment that cooking actions are difficult to
perform successfully with the Remote control, leading to
frustration [8]. Moreover, the game is not designed to teach
programming to kids but rather to entertain them while our
goal is specifically to teach programming.

3. Z SPECIFICATION
This section presents our formal language specification

of the Kitchen Environment in Z notation that was type-
checked using the Z/Eves tool [18]. We preferred to use an
abstract definition, which does not define the necessary data
structures, rather than an implementable concrete design.

We decided that an event-based programming language
is a better fit to our task. Therefore, distinct from the
Kitchen, the system has a Timer mechanism to keep track
of which event to throw, at what time, and how to handle
it. Kitchen’s state is based on the current time. The pre-
conditions and post-conditions of each schema, and how the
state of the world evolves are provided within these declara-
tions. If the users of the system call the operations appropri-
ately, unexpected situations cannot happen. Error reports
are produced for those situations when the preconditions are
not met.

3.1 Type Declarations
We start formalizing our system by defining the basic

types of the specification. CNAME represents a unique cook
name while INAME is a unique ingredient name.

[CNAME , INAME ]

Below are some values that other types can take in the
system. ENAME stands for an event name, MNAME is a mea-
surement name, KNAME is the general name of utensils, ap-
pliances, and tools that may be used, REPORT is defined for
error handling.

ENAME ::= bakeDone | cleanDone | cookDone |
cutDone | kneadDone | mixDone |
preheatDone | putDone

MNAME ::= teaspoon | tablespoon | cup | pint | quart |
ounce | pound | package | pinch | gram |
gallon | liter | hour | minute | celsius |
fahrenheit | integer

KNAME ::= counter | faucet | oven | refrigerator | table
REPORT ::= ok | already known | not known |

wrong direction

Some type declarations use these primitive types. KITCHEN ITEM

has a name and a time value in which it announces that it is
done. AUTO kitchen items work without manual control. We
represent the Cook schema as a type (see Section 5). Cooks
are referred by a unique name; has fields for time to start
and end the action. EID is used to declare a unique iden-
tifier for each event. A MEASUREMENT is defined by a name
and amount. Ingredient is another schema as type. Ev-
ery Ingredient consists of a name, measure, and a set of
other ingredients that changes with time. The types of in-
gredients are restricted to BAKED, CUT, KNEADED, MIXED, PRO-
CESSED, and RAW. Direction stores the actual event calls for
later use. RECIPE is a direction that is identified by the EID

along with the items, measurements, and ingredients.

KITCHEN ITEM == KNAME × N
AUTO ITEM == KITCHEN ITEM
Cook b= [cname : CNAME ; initAction : N; endAction : N]
EID == ENAME × N
MEASUREMENT == MNAME × N
Ingredient b= [iname : INAME ; measure :

MEASUREMENT ; composedOf : N→ P INAME ]
BAKED INGREDIENT == Ingredient
CUT INGREDIENT == Ingredient
KNEADED INGREDIENT == Ingredient
MIXED INGREDIENT == Ingredient
PROCESSED INGREDIENT == Ingredient
RAW INGREDIENT == Ingredient
DIRECTION b= [c : Cook ; item : KITCHEN ITEM ;

app : KITCHEN ITEM ; ingr : P Ingredient ]
RECIPE == EID → KITCHEN ITEM×

KITCHEN ITEM ×MEASUREMENT×
MEASUREMENT × P Ingredient

When the specification successfully executes, one would
like to produce a report that indicates successful completion
as shown with Success schema.

Success
result ! : REPORT

result ! = ok

3.2 State Specification
Kitchen schema acts as a database for our cooking lan-

guage. There are cooks, items, ingredients in this world.
It keeps track of Available cooks, items, and ingredients,
Dirty and Heated items as well as UsedIngredients. All of
these entities depend on time (notice the relation symbols
associated with each of them). Recipe, on the other hand, is
used for checking if the order and arguments of events really
comply with the actual directions that are specified within
the given recipe.

Kitchen
cooks : P Cook
items : P KITCHEN ITEM
ingredients : P Ingredient
AvailableCook : Cook ↔ N
AvailableItem : KITCHEN ITEM ↔ N
DirtyItem : KITCHEN ITEM ↔ N
HeatedItem : KITCHEN ITEM ↔ N
AvailableIngredient : Ingredient ↔ N
UsedIngredient : Ingredient ↔ N
Recipe : RECIPE

dom AvailableCook ⊆ cooks
dom AvailableItem ⊆ items
dom DirtyItem ⊆ items
dom HeatedItem ⊆ items
dom AvailableIngredient ⊆ ingredients
dom UsedIngredient ⊆ ingredients
∀ t : N • dom (AvailableItem B {t})

∩dom (DirtyItem B {t}) = ∅
∀ t : N • dom (AvailableIngredient B {t})

∩dom (UsedIngredient B {t}) = ∅

The predicates in the Kitchen schema indicate that Avail-
ableCook is defined for those cooks in the Kitchen. Simi-
larly, AvailableItem, DirtyItem, and HeatedItem have items
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as their domain. AvailableIngredient and UsedIngre-

dient are also in the domain of ingredients. There are
two more important facts imposed on the system: that an
item cannot be both Available and Dirty at the same time
and analogously, AvailableIngredient and UsedIngredi-

ent are disjoint sets at all times.
Timer is a mechanism that updates the current time (cur-

rTime) and is distinct from the Kitchen. For every event
that was added to the handler, directions keeps track of
the properties (which cook was involved, what items and in-
gredients were used, etc.) of that event call in order later
to properly associate them with the Done call. currEvents

is a set of events that need to be handled at the currTime.
EventCount counts the number of events and is practical in
cases when multiple of the same type events are announced
simultaneously (it gives them unique identifiers). The Even-

tHandler associates events with the time that they are going
to be announced. The predicates of this schema state that
directions contain those event identifiers that were added
to the EventHandler at some point. currEvents are a sub-
set of those events in the directions. Additionally, at every
point EventHandler contains events that have not been an-
nounced yet.

Timer
currTime : N
directions : EID → Direction
currEvents : P EID
EventCount : N
EventHandler : EID → N

dom EventHandler ⊆ dom directions
currEvents ⊆ dom directions
∀ e : EID • currTime ≤ EventHandler (e)

The initial state of the Kitchen – dependent on the Timer

– starts with given cook?s, and a default set of items: counter,
faucet, refrigerator, oven, and table. Other sets are
empty except that Recipe has to be non-empty. There are
two crucial facts in the initial state. First, all ingredients
are RAW INGREDIENTs. Second, they are not compositions of
other ingredients yet.

InitKitchen
Kitchen
Timer
cook? : P Cook

dom (AvailableCook B {currTime}) = cook?
∀ i : Ingredient •

i ∈ dom (AvailableIngredient B {currTime})
⇒ i ∈ RAW INGREDIENT

∀ i : Ingredient • i ∈ ingredients
⇒ ran ({currTime}C i .composedOf ) = ∅

DirtyItem = ∅
HeatedItem = ∅
UsedIngredient = ∅
Recipe 6= ∅

Aside from the Kitchen, the Timer initializes itself as fol-
lows. The currTime starts from the 0th minute and Event-

Count is 0. directions and currEvents both start with
empty sets.

InitTimer
Timer

currTime = 0
directions = ∅
currEvents = ∅
EventCount = 0

3.3 Error Handling
Since we want to report errors that break the constraints

of the system, below are some schemas that report errors
based on whether the cook, or the kitchen item, or the in-
gredients are not defined. They all report not known to the
user. Note also that they do not change the state but simply
quit the application with an appropriate message.

UnknownCook
ΞKitchen
preparer? : Cook
result ! : REPORT

preparer? /∈ cooks
result ! = not known

UnknownTool
ΞKitchen
tool? : KITCHEN ITEM
result ! : REPORT

tool? /∈ items
result ! = not known

UnknownIngredient
ΞKitchen
what? : P Ingredient
result ! : REPORT

what? 6⊆ ingredients
result ! = not known

Because cooking is an ordered activity and directions need
to be strictly followed, we store the set of necessary direc-
tions in the Recipe. At each event call, the event’s name
and inputs are checked against that of the instructions from
the Recipe, for tools, measurements, and ingredients. When
there is a mismatch, the WrongDirection schema complains
with an error message.

WrongDirection
ΞKitchen
event? : EID
tool? : KITCHEN ITEM
where? : KITCHEN ITEM
duration? : MEASUREMENT
amount? : MEASUREMENT
what? : P Ingredient
result ! : REPORT

ran({event?}C Recipe) 6=
{(tool?, where?, duration?, amount?, what?)}

result ! = wrong direction

3.4 Event Handling
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Now that we have defined the basics of our system, we
explain the dynamics of it using schemas to represent the
operations. In the rest of this section, we elaborate on how
the kitchen world evolves.
Tick is the Timer advancement mechanism which does

not have a precondition but increases the currTime by one
minute. It selects from the EventHandler all events, which
are stored in the format (event-to-throw, minute-since-start),
associated with that particular moment in time and passes
them to currEvents so that they can be handled. Neither
directions nor EventCount changes.

Tick
∆Timer

currTime ′ = currTime + 1
directions ′ = directions
currEvents ′ = currEvents∪

dom(EventHandler B {currTime})
EventCount ′ = EventCount
EventHandler ′ = EventHandler −B {currTime}

Events get recorded at the time of an event call if the
current state of the world satisfies their pre-conditions. The
handling of an event means associating the event with its
matched Done event at the correct time to update the state
according to the post-conditions. Therefore, there are four
steps in the lifetime of an event: (i) The cook goes and picks
up/turns on the corresponding kitchen item (see Figure 1
and schemas that use it), (ii) The tool works on complet-
ing the recipe direction (the time during which it is stored in
the EventHandler1), (iii) The cook returns back to the table
where it was working (see CookDone), (iv) The item finishes
its job and announces its completion (see EventDone and
schemas that use it). Note here that steps (iii) and (iv)
may be done in parallel especially if the tool can work au-
tonomously, otherwise, the cook has to be actively engaged
in the successful completion of the operation. None of these
steps are instantaneous and span some duration specified by
the user or imposed by the system.

3.5 Event Specifications
Throughout this paper, we refer to Bake, Clean, Cut,

Knead, Mix, Preheat, and Put as events and an event com-
pletion as a Done event. All events can potentially change
the state of the Kitchen database. The cook and the tool
determine their own destinies with separate Done calls.
Event schema (Figure 1) uses the Kitchen during a change

in the Timer state. This schema represents the common fea-
tures in every event and thus, is included in all of the seven
event calls. The pre-conditions are that the preparer? has
to be an AvailableCook at the time of the call. The dura-

tion? specified by the user is in terms of minutes and hours
and has a non-zero value. The post-conditions are as follows.
At the end of this event call, the cook becomes unAvailable.
The number of events (EventCount) increases. Two new
directions are created for CookDone and EventDone whose
times are calculated with respect to the input duration?

and the tool?’s type. These are simultaneously added to the
EventHandler. There is no modification on the currEvents

since it is the Tick event that determines which events are

1The EventHandler works as a temporary storage for done
calls.

announced at the current time. This event spans the time
between the initial call and the cook’s response time (see
currTime update in Figure 1). No ingredients’ compositions
are affected.
Done is another generic schema defined for done events.

Similar to Event, it acts upon the Kitchen given the Timer.
There is no change in UsedIngredients, EventCount, or di-
rections during this call. The given event identifier is used
to remove this event from currEvents. ename is helpful in
deciding which done event should be called since there are
eight of them, i.e. CookDone, BakeDone, CleanDone, Cut-

Done, KneadDone, MixDone, PreheatDone, PutDone.

Done
Kitchen
∆Timer
ename : ENAME
eid : EID

dom (UsedIngredient B {currTime ′}) =
dom (UsedIngredient B {currTime})

EventCount ′ = EventCount
directions ′ = directions
EventHandler ′ = EventHandler
first eid = ename ∧ eid ∈ currEvents
currEvents ′ = currEvents \ {eid}

EventDone imports Done schema to add those declarations
that are more specifically related to done events, except the
CookDone. Therefore, AvailableCook is unaffected by this
call. The item duration is extracted from the set of direc-
tions to determine when this call ends.

EventDone
Done

dom (AvailableCook B {currTime ′}) =
dom (AvailableCook B {currTime})

currTime ′ = currTime + second (directions eid) .item

CookDone (Figure 2) is the schema for making an unavail-
able cook Available again. Hence, it does not act on items,
or ingredients (and their compositions). It obtains the pre-

parer? from directions and at the end of the call, updates
AvailableCook with this person included.
Bake (Figure 3) expects the oven to be in HeatedItem

and the what? to be in AvailableIngredients, which will
all later be removed from this set and become present in the
UsedIngredient. The tool? becomes Dirty at this event
call but is still Heated. The directions is updated using
all of this event information.
RBake is a stronger version of Bake that checks against

bad conditions and reports success if it can execute.

RBake b= (Bake ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

BakeDone (Figure 4) is the counterpart of the Bake event.
It does not modify AvailableItem or DirtyItem. At the
end of this event, HeatedItem no longer contains the oven.
Besides, it adds a new AvailableIngredient that is of type
BAKED INGREDIENT and updates this ingredient’s composi-
tion to include those that were used in the initial Bake call.
None of the other ingredients’ compositions change.
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Event
Kitchen
∆Timer
preparer? : Cook
tool? : KITCHEN ITEM
duration? : MEASUREMENT
dir : Direction
cookTime, toolTime : N
ename : ENAME

preparer? ∈ dom (AvailableCook B {currTime})
first duration? ∈ {minute, hour} ∧ second duration? 6= 0
dom (AvailableCook B {currTime ′}) = dom (AvailableCook B {currTime}) \ {preparer?}
EventCount ′ = EventCount + 1
directions ′ = directions ∪ {((ename, EventCount) 7→ dir), ((cookDone, EventCount) 7→ dir)}
first duration? = minute ⇒ toolTime = preparer? .initAction + second duration?
first duration? = hour ⇒ toolTime = preparer? .initAction + 60 ∗ second duration?
tool? ∈ AUTO ITEM ⇒ cookTime = preparer? .initAction
first duration? = minute ∧ tool? /∈ AUTO ITEM ⇒ cookTime = preparer? .initAction + second duration?
first duration? = hour ∧ tool? /∈ AUTO ITEM ⇒ cookTime = preparer? .initAction + 60 ∗ second duration?
EventHandler ′ = EventHandler ∪ {((ename, EventCount) 7→ currTime + toolTime),

((cookDone, EventCount) 7→ currTime + cookTime)}
currEvents ′ = currEvents
currTime ′ = currTime + preparer? .initAction
∀ i : Ingredient • ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 1: Event schema is one of the major components in the system. It is reused in many event calls.
Its purpose is to check whether the preconditions of an event are satisfied and if so, it adds them to the
EventHandler.

In real life, one generally uses ingredients and kitchen tools
interchangeably when the ingredient is in the tool. In order
to solve this ambiguity, in this language, each and every
preparation is referred to using only the ingredient since in
fact the intended behavior is on the food rather than the
item itself. Thus, all done events only return ingredients.

Apart from this fact, in this system, any DirtyItem is no
longer usable. Therefore, Clean (Figure 5) event is used to
return those DirtyItems to the AvailableItem pool. The
only self-cleansing tool is the faucet, which is assumed to
be always clean. More specifically, Clean takes a Dirty but
non-Heated tool?2. The faucet becomes unAvailable dur-
ing this call. DirtyItem, HeatedItem, AvailableIngredi-
ent, and UsedIngredient are still the same. The appropri-
ate directions are prepared to be included in the Timer.
RClean, similar to RBake, is a stronger version of Clean

that reports success if the error conditions do not happen.

RClean b= (Clean ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

CleanDone (Figure 6) updates AvailableItems with the
faucet and the cleaned! and removes cleaned! from
DirtyItems. HeatedItem and AvailableIngredient remain
unchanged as well as ingredients’ composition fields.
Cut (Figure 7) schema uses Available and non-Heated

tool? and where?, which stand for the item that is used
to cut and another auxiliary item (like a cutting board)
that helps in accomplishing this, respectively. These items
cannot be the counter or the faucet. what? is a set

2We do not want a burnt cook.

of AvailableIngredients. At the end time of this call,
AvailableIngredients no longer contain what? but in-
stead UsedIngredients do. As tool? and where? get
added to DirtyItem, they are removed from AvailableItem.
HeatedItem is unchanged throughout this time. Knead (Fig-
ure 11), Mix (Figure 13), and Put (Figure 15) events are
similar to the Cut event and in fact, formally do not differ
in their specifications; the only difference is user’s intended
system behavior, i.e. the visual effects. Therefore, these
schemas are moved to Appendix A.
Cut is strengthened in the RCut schema. Due to the same

reasons above, we moved RKnead, RMix, and RPut to Ap-
pendix A.

RCut b= (Cut ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

CutDone (Figure 8) schema is similar to BakeDone schema
with two differences. First, it creates a CUT INGREDIENT

as an output as opposed to a BAKED INGREDIENT. Second,
and more importantly, it does not update HeatedItem be-
cause Cut does not operate on HeatedItems. KneadDone

(Figure 12), MixDone (Figure 14), and PutDone (Figure 16)
are close in their specification to this schema and so are in
the Appendix A.

The last schema in this section is Preheat (Figure 9)
whose behavior is defined as follows. It takes an non-HeatedItem
and AvailableItem that is the oven and makes it unavail-
able (but not Dirty) until it is finished with this tool?.
It has no effect on HeatedItem, AvailableIngredient, and
UsedIngredient. Also the amount? should be given in terms
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CookDone
Done
preparer? : Cook

ename = cookDone ∧ (directions eid) .c = preparer?
dom (AvailableCook B {currTime ′}) = dom (AvailableCook B {currTime}) ∪ {preparer?}
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime})
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime})
∀ i : Ingredient • ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )
currTime ′ = currTime + preparer? .endAction

Figure 2: CookDone schema is a done event thrown for each of Bake, Clean, Cut, Knead, Mix, Preheat, and Put

events. It brings the cook back to the table where s/he can work.

Bake
Event
what? : P Ingredient

ename = bakeDone ∧ what? ⊆ dom (AvailableIngredient B {currTime})
tool? ∈ dom (HeatedItem B {currTime}) ∧ first tool? = oven
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {tool?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) ∪ {tool?}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) \ what?
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime}) ∪ what?
dir = Θ Direction[c := preparer?, item := tool?, app := tool?, ingr := what?]

Figure 3: Bake schema expects AvailableIngredients and an Available and HeatedItem. At the end of the call,
the ingredients are UsedIngredient and the tool? is a DirtyItem.

of temperature.
Below is RPreheat schema that takes into account unex-

pected behavior in the Preheat.

RPreheat b= (Preheat ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

When PreheatDone (Figure 10) event is thrown, it re-
turns the appliance back to AvailableItem but also adds it
to HeatedItem. No changes occur in DirtyItem or Avail-

ableIngredient.

4. ALLOY MODEL IMPLEMENTATION
In this section, we describe our steps to convert our Z

specification into an Alloy model. Our goal in writing this
model is to describe some aspects of our system (but not
the entire system), to constrain it to exclude ill-formed ex-
amples, and automatically check properties about it. We
paid special attention to finding and correcting errors in the
Z specification that we are modeling and bugs in the Al-
loy model itself. Our Alloy model directly followed our Z
specification with the following modifications:

1. Measurement or any constant is not modeled.

2. Each class of ingredients are represented with a static
field called IngredientType that are used to repre-
sent Baked, Cut, Kneaded, Mixed, Processed, and Raw

types.

3. EventHandler is not defined in the model.

4. A fact imposes an ordering on states such that it makes
the state to directly jump to the next Time if the pre-
conditions are met.

5. We also impose the following fact statements:

(a) Every CookDone event must follow one of Bake,
Clean, Cut, Knead, Mix, Preheat, and Put events.

(b) Every Bake, Clean, Cut, Knead, Mix, Preheat, and
Put event is respectively followed by one of Bake-
Done, CleanDone, CutDone, KneadDone, MixDone,
PreheatDone, and PutDone events and also one
CookDone event after it.

(c) Every BakeDone, CleanDone, CutDone, KneadDone,
MixDone, PreheatDone, and PutDone event respec-
tively follows one of Bake, Clean, Cut, Knead, Mix,
Preheat, and Put events before it.

6. Cut, Knead, Mix, and Put predicates are combined to-
gether in one predicate since they have exactly the
same declarations.

7. BakeDone, CutDone, KneadDone, MixDone, and PutDone

predicates are defined as one predicate since they change
the state of the world in the same manner.

8. Clean can work on both dirty and clean items.

9. Error handling is unnecessary in the Alloy model.

10. Although our Z specification may work as different
threads for each event (since it gives no clues about the
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BakeDone
EventDone
baked ! : BAKED INGREDIENT

ename = bakeDone
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime})
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime}) \ {(directions eid) .item}
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) ∪ {baked !}
∀ i : Ingredient • i ∈ (directions eid) .ingr

⇒ ran ({currTime ′}C baked ! .composedOf ) = ran ({currTime}C baked ! .composedOf ) ∪ {{i .iname}}
∧ i /∈ (directions eid) .ingr ⇒ ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 4: BakeDone schema updates the AvailableIngredients to include a BAKED INGREDIENT that is a composition
of previously UsedIngredients.

Clean
Event
where? : KITCHEN ITEM

first where? = faucet ∧ ename = cleanDone
tool? ∈ dom (DirtyItem B {currTime}) ∧ tool? /∈ dom (HeatedItem B {currTime})
where? ∈ dom (AvailableItem B {currTime}) ∧ where? /∈ dom (HeatedItem B {currTime})
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {where?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime})
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime})
dir = Θ Direction[c := preparer?, item := tool?, app := where?, ingr := ∅]

Figure 5: Clean schema makes it possible to reuse DirtyItems so, it has no effect on the ingredients.

implementation), Alloy model can process one event at
a time.

11. Without loss of generalization, Ingredient signature
has a Sequence (not a set) of Ingredients as its com-
position rather than just their names.

With this implementation, we checked the following asser-
tions that are essential to correct execution of our system:

1. No cooks are born or dead.

2. Preheat event call always precedes Bake.

3. Every cook becomes busy after event calls.

4. Item is the same tool after getting cleaned, i.e. no item
disappears if all are cleaned.

5. Items become unAvailable after event calls.

6. Preheat is the only way to heat an item.

7. When Done events are thrown, items become Avail-

able again.

8. Ingredients become UsedIngredients after event calls.

9. With Done events, new ingredients become Available.

10. UsedIngredients never become AvailableIngredient
again.

11. HeatedItems should always be Available for use to
protect against fire.

12. AvailableIngredients are composed of only UsedIn-

gredients.

13. Raw ingredients are never a composition of other ingre-
dients.

14. AvailableIngredients that are not Raw are composi-
tions of other ingredients.

These checks in our model we believe brought more con-
fidence to our system that bad situations are less likely to
happen.

5. DISCUSSION
In this section we will discuss some of our design decisions

and some discoveries from our implementation.
Throughout this paper, we employed a direct Z definition

to Alloy implementation order. However, although we in fact
started with Z and later developed our Alloy model, the final
Z and Alloy models were developed almost side-by-side. Our
attempts showed that without our automatic analysis tools
(both Z/Eves and Alloy Analyzer), proofs of completeness
and soundness by hand would have required a substantial
amount of effort and time. Also, their correctness would still
be arguable. We particularly find type checking in Z/Eves
and visualization and Evaluator components of Alloy very
useful.

Because the level of automation in assisted theorem provers
is still relatively poor compared to model checkers, our expe-
riences with Z/Eves Theorem Prover showed that proofs in
such systems are completed haphazardly. On the contrary,
one of the great benefits of Alloy is its support of incremen-
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CleanDone
EventDone
cleaned ! : KITCHEN ITEM

ename = cleanDone ∧ cleaned ! = (directions eid) .item
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) ∪ {(directions eid) .app, cleaned !}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) \ {cleaned !}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime})
∀ i : Ingredient • ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 6: CleanDone schema adds a DirtyItem to AvailableItem.

Cut
Event
where? : KITCHEN ITEM
what? : P Ingredient

ename = cutDone ∧ what? ⊆ dom (AvailableIngredient B {currTime})
tool? ∈ dom (AvailableItem B {currTime}) ∧ tool? /∈ dom (HeatedItem B {currTime})
where? ∈ dom (AvailableItem B {currTime}) ∧ where? /∈ dom (HeatedItem B {currTime})
first tool? /∈ {counter , faucet} ∧ first where? /∈ {counter , faucet}
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {tool?, where?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) ∪ {tool?, where?}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) \ what?
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime}) ∪ what?
dir = Θ Direction[c := preparer?, item := tool?, app := where?, ingr := what?]

Figure 7: Cut schema makes use of tool? and where? items, and a set of what? ingredients. It updates the
states of AvailableItem, DirtyItem, AvailableIngredient, UsedIngredient accordingly. Mix, Knead, and Put have
similar schema declarations.

tal analysis. We initially explored design ideas starting from
a tiny model (developed using the Z specification) and then
scaled it up with making sure that Alloy is properly handling
the extensions at every step.

Because we did not use Object-Z [4], class hierarchies were
difficult to model in the Z specification as well as those types
that require recursive nature3. Furthermore, tuples that
use more than two types make it extremely cumbersome
to extract their parts. Thus, we chose to define schemas as
types since we want to have immediate access to their fields
by name. Conversely, Alloy readily distinguishes between
events (predicates) and states (signatures and facts), which
are not transparent in the Z specification (all represented
with schemas). It also easily captured the predicates that
have overlapping definitions and required us to put them
together into a single predicate.

Our Z specification can handle integers and constants.
However, Alloy’s capabilities are limited because a fully au-
tomatic analysis sacrifices completeness and can only find
counterexamples that violate the constraints of the system
within a limited scope4. Since integers are infinite, they can-
not be properly modeled in Alloy. Because of this, our model
can operate on discrete time points in which the event takes
place. Similarly, as the number of constants increase, Alloy’s

3Ingredient is a type that links to used ingredients.
4The Small Scope Hypothesis [9] states that small scope
checks are extremely valuable for finding errors.

analysis takes longer to finish. Therefore, we had to simplify
our Z specification to still be able to illustrate the system
behavior properly but comply with Alloy’s limitations. An-
other big challenge is to match the events with their Done

counterparts without the explicit use of an EventHandler.

6. CONCLUSIONS & FUTURE WORK
In this paper, we presented our attempts to formalize a

novice programming language based on the cooking theme
using formal language specification methods and automatic
analysis tools. Although this mini-language is straightfor-
ward to interpret, it is important to make sure that bugs
and errors do not exist since later the implementation will
be based on it. Our final Alloy model is complicated and
long (≈ 500 lines) compared to the examples we have seen
so far.

We also discussed some of the lessons learned from design-
ing such a full specification and a model. The future work
is to implement the language using this specification. We
anticipate that it would not have been possible to directly
build this surprisingly difficult language at the first attempt.
Our insights that we gained through this work will later be
valuable in the actual language development steps.
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APPENDIX
A. EXTRA SCHEMAS

Because some of the schemas had the same declarations
with minor changes, we put them into this section. Knead

(Figure 11), Mix (Figure 13), and Put (Figure 15) schemas
are similar to the previously described Cut (Figure 7). In
addition, KneadDone (Figure 12), MixDone (Figure 14), and
PutDone (Figure 16) are similar to CutDone (Figure 8) that
was already explained in detail. Below, we also provide
RKnead, RMix, and RPut schemas as the robust versions of
Knead, Mix, and Put, respectively.

RKnead b= (Knead ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

RMix b= (Mix ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection

RPut b= (Put ∧ Success) ∨ UnknownCook
∨ UnknownTool ∨ UnknownIngredient
∨WrongDirection
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Knead
Event
where? : KITCHEN ITEM
what? : P Ingredient

ename = kneadDone ∧ what? ⊆ dom (AvailableIngredient B {currTime})
tool? ∈ dom (AvailableItem B {currTime}) ∧ tool? /∈ dom (HeatedItem B {currTime})
where? ∈ dom (AvailableItem B {currTime}) ∧ where? /∈ dom (HeatedItem B {currTime})
first tool? /∈ {counter , faucet} ∧ first where? /∈ {counter , faucet}
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {tool?, where?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) ∪ {tool?, where?}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) \ what?
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime}) ∪ what?
dir = Θ Direction[c := preparer?, item := tool?, app := where?, ingr := what?]

Figure 11: Knead schema

KneadDone
EventDone
kneaded ! : KNEADED INGREDIENT

ename = kneadDone
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime})
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) ∪ {kneaded !}
∀ i : Ingredient • i ∈ (directions eid) .ingr

⇒ ran ({currTime ′}C kneaded ! .composedOf ) = ran ({currTime}C kneaded ! .composedOf ) ∪ {{i .iname}}
∧ i /∈ (directions eid) .ingr ⇒ ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 12: KneadDone schema

Mix
Event
where? : KITCHEN ITEM
what? : P Ingredient

ename = mixDone ∧ what? ⊆ dom (AvailableIngredient B {currTime})
tool? ∈ dom (AvailableItem B {currTime}) ∧ tool? /∈ dom (HeatedItem B {currTime})
where? ∈ dom (AvailableItem B {currTime}) ∧ where? /∈ dom (HeatedItem B {currTime})
first tool? /∈ {counter , faucet} ∧ first where? /∈ {counter , faucet}
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {tool?, where?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) ∪ {tool?, where?}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) \ what?
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime}) ∪ what?
dir = Θ Direction[c := preparer?, item := tool?, app := where?, ingr := what?]

Figure 13: Mix schema
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MixDone
EventDone
mixed ! : MIXED INGREDIENT

ename = mixDone
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime})
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) ∪ {mixed !}
∀ i : Ingredient • i ∈ (directions eid) .ingr

⇒ ran ({currTime ′}C mixed ! .composedOf ) = ran ({currTime}C mixed ! .composedOf }) ∪ {{i .iname}}
∧ i /∈ (directions eid) .composedOf ⇒ ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 14: MixDone schema

Put
Event
where? : KITCHEN ITEM
what? : P Ingredient

ename = putDone ∧ what? ⊆ dom (AvailableIngredient B {currTime})
tool? ∈ dom (AvailableItem B {currTime}) ∧ tool? /∈ dom (HeatedItem B {currTime})
where? ∈ dom (AvailableItem B {currTime}) ∧ where? /∈ dom (HeatedItem B {currTime})
first tool? /∈ {counter , faucet} ∧ first where? /∈ {counter , faucet}
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime}) \ {tool?, where?}
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime}) ∪ {tool?, where?}
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) \ what?
dom (UsedIngredient B {currTime ′}) = dom (UsedIngredient B {currTime}) ∪ what?
dir = Θ Direction[c := preparer?, item := tool?, app := where?, ingr := what?]

Figure 15: Put schema

PutDone
EventDone
processed ! : PROCESSED INGREDIENT

ename = putDone
dom (AvailableItem B {currTime ′}) = dom (AvailableItem B {currTime})
dom (DirtyItem B {currTime ′}) = dom (DirtyItem B {currTime})
dom (HeatedItem B {currTime ′}) = dom (HeatedItem B {currTime})
dom (AvailableIngredient B {currTime ′}) = dom (AvailableIngredient B {currTime}) ∪ {processed !}
∀ i : Ingredient • i ∈ (directions eid) .ingr

⇒ ran ({currTime ′}C processed ! .composedOf ) = ran ({currTime}C processed ! .composedOf ) ∪ {{i .iname}}
∧ i /∈ (directions eid) .ingr ⇒ ran ({currTime ′}C i .composedOf ) = ran ({currTime}C i .composedOf )

Figure 16: PutDone schema
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