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Abstract

Over the last decades several approaches were intro-

duced to deal with cast shadows in background subtraction

applications. However, very few algorithms exist that ad-

dress the same problem for still images. In this paper we

propose a figure ground segmentation algorithm to segment

objects in still images affected by shadows. Instead of mod-

eling the shadow directly in the segmentation process our

approach works actively by first segmenting an object and

then testing the resulting boundary for the presence of shad-

ows and resegmenting again with modified segmentation

parameters. In order to get better shadow boundary detec-

tion results we introduce a novel image preprocessing tech-

nique based on the notion of the image density map. This

map improves the illumination invariance of classical filter-

bank based texture description methods. We demonstrate

that this texture feature improves shadow detection results.

The resulting segmentation algorithm achieves good results

on a new figure ground segmentation dataset with challeng-

ing illumination conditions.

1. Introduction

Shadows are visual phenomena which happen when an

area in the scene is occluded from the primary light source

(e.g. sun). Shadows are everywhere around us and we are

rarely confused by their presence. On the contrary they

provide an additional source of information about the ge-

ometry of the scene [4], position of the light sources [18],

shape of the objects [10] etc. However, shadows proved to

be a challenging problem for computer vision algorithms.

Object detection, segmentation, tracking and stereo are all

confused by shadows because they change the appearance

of the scene and move together with the objects.

In the past few decades a lot of work was done on de-

tecting moving cast shadows in fixed camera setups aimed

at surveillance applications. An overview and compari-

son of such approaches were made by Prati et al. [16]

and Al-Najdawi et al. [1]. Notable papers include Hor-

(a) Undersegmentation (b) Oversegmentation

Figure 1: Examples of segmentation errors caused by shad-

ows. (a) Object is undersegmented because of strong self

shadow (b) Object is ovsegmented because of strong cast

shadow.

prasert et al. [9] who introduce a computational color model

that separates pixel RGB value changes into brightness and

chromaticity components, and Strauder et al. [20] who use

the observation that in HSV colour space shadows don’t

change the hue but decrease the saturation of shadowed sur-

faces. More recently, Salvador et al. [17] combined invari-

ant colour features with geometric information to do cast

shadow segmentation in both images and video sequences.

Some approaches leverage image formation theory to de-

rive intrinsic images that are independent of illumination

conditions. Weiss et al. [22] analyse a sequence of images

taken with a static camera to derive an intrinsic representa-

tion of the scene. Finlayson et al. [7] compute a 2D chro-

maticity image that is shadow free and find shadow edges

by subtracting edges in a shadow free image from edges in

the original image.

Most recently, a number of methods were proposed that

take advantage of machine learning techniques to detect

shadows in single images. Zhu et al. [24] use a CRF trained

on intensity, texture and odd order derivative features to de-

tect shadow regions in monochromatic images. Lalonde et

al. [11] detect shadow boundaries by computing intensity,

texture and colour difference features across boundary seg-

ments obtained from a watershed oversegmentation of the

image. Spatial smoothness is then enforced by means of

a CRF. Guo et al. [8] predict shadow probability for in-



dividual image patches and combine them with observa-

tions about material and illumination similarity of nearby

patches.

In this paper we address the problem of foreground back-

ground segmentation of objects affected by shadows in still

images. A large amount of existing foreground segmenta-

tion algorithms rely on strong image gradients to find the

potential object boundaries. As a result, they are prone to

be confused by shadows because shadows not only appear

as strong boundaries in the image, but also attenuate true

object boundaries. There are two ways how a shadow can

corrupt a segmentation: either a cast shadow is erroneously

included in the segmentation, or a strong self shadow causes

the object to be undersegmented (Figure 1). We use a

modified version of the segmentation approach proposed by

Mishra et al. [14]. This algorithm takes as input a user spec-

ified fixation point and uses the graph cut algorithm [5] to

find a closed contour surrounding a region containing the

fixation point. To increase the robustness of the algorithm

to the presence of shadows, we first segment the object and

then analyse the resulting segmentation boundary to see if

it contains strong shadow boundaries. If that is the case we

modify the segmentation parameters and resegment again.

The main advantage of this active approach is that it saves

us the burden of detecting shadow boundaries everywhere

in the image, which is both computationally expensive and

not well defined. Foreground segmentation naturally de-

fines a boundary of interest so we can focus on a handful of

boundary segments that are potentially causing trouble.

To classify shadow boundaries, we take a statistical ap-

proach similar to [11]. We first extract intensity, colour

and texture dissimilarity features from image boundaries

and then feed them to an SVM. For colour and intensity

we use features previously proposed in the literature. The

difference is in the way we treat texture. Most of the recent

approaches use the texture description method introduced

in [12]. An image is filtered with a filterbank, and responses

are clustered to form a dictionary of prototypical responses

called textons. Each pixel is then assigned to its closest

texton and the texture of an image patch is described by a

histogram of textons. Texture similarity is estimated as the

χ2-distance between texton histograms. Although this ap-

proach works well in situations where illumination changes

are not significant it is not adequate for images with strong

shadows (Figure 2). To remedy this problem we introduce

a novel image preprocessing operation to produce the im-

age density map. This map preserves the textural details

of the image and is invariant to multiplicative illumination

changes. A filterbank technique can be applied to this map

instead of the grayscale image, thus giving a rich texture

description that is robust to illumination changes.

The main contributions of this paper are: (1) a new im-

age preprocessing technique that improves illumination in-

(a) Grayscale image (b) Density map

(c) Grayscale textons (d) Density textons

Figure 2: Visual comparison of textons computed on

grayscale image and corresponding density map. Intensity

textons differ significantly between the shadowed and sun-

lit regions of the same material. This effect is reduced for

density textons. Note that density map is mapped to [0, 1]
and contrast normalized for visualization purposes.

variance of filterbank based texture description techniques;

(2) a quantitative evaluation of the technique in the context

of shadow detection (3); a novel method to improve figure

ground segmentation results in the presence of shadows; (4)

a quantitative evaluation of the segmentation algorithm on

a new dataset of objects in challenging illumination condi-

tions1.

2. Shadows and texture

A widely used scene luminance model [2] describes in-

tensity of an image pixel I(x) as

I(x) = R(x) · L(x) · C(x), (1)

where R(x) is the reflectance field, L(x) is the illumina-

tion field and C(x) is the illumination reduction term which

models the effects of shadows. Appearance changes due

to shadows are modeled as multiplicative changes to inten-

sity. C(x) can be smoothly varying to model penumbra or

soft shadow effects. However, we are interested in strong

shadow boundaries which have no penumbra region, thus

we assume that C(x) is piecewise constant. According to

this model the texture of a surface under cast shadows will

not change i.e. the ratios of intensities of adjacent pixels are

preserved. It is important to note that this model works best

for shallow surfaces with small depth variation. A surface

with prominent 3D structure (like grass or gravel) exposed

1Code and dataset are available at http://www.umiacs.umd.

edu/˜aecins/.



(a) (b) (c)

Figure 3: Local density of intensity at center point (a) 1.83;

(b) 2; (c) 2.7.

to a directional lightsource will create additional smaller

self shadows due to irregularities in the 3D surface. When

such a surface falls under cast shadow, the self shadows dis-

appear thus changing the texture appearance of the surface.

These effects are difficult to model and we will ignore them

in this discussion.

The most common texture description method used for

shadow detection is based on the texton approach intro-

duced by Malik et al. [12]. A grayscale image is fil-

tered with a filterbank consisting of even and odd symmet-

ric Gaussian derivative filters at multiple orientations and

scales. The resulting responses are clustered using k-means

to form representative filter responses called textons. Each

pixel is then mapped to its closest texton. The downside of

this method is that it is not robust to illumination changes.

Due to an associative property of convolution, the filter re-

sponse of a shadowed image patch will be attenuated (i.e.

f ∗ (c · I) = c · (f ∗ I)). This results in shadow pixels

being mapped to lower energy textons. Thus the texton dis-

tribution in shadowed region may differ significantly from

the same non-shadowed region (Figure 2c).To alleviate this

problem, we propose to apply the texton approach on the

density map instead of the grayscale image.

2.1. What is a density map?

The notion of density comes from fractal theory. Den-

sity measures locally the variation of a quantity over a num-

ber of scales. It has been used before for texture classifi-

cation [23] [21]. The idea is that at small scales naturally

occurring objects (here the texture) change over scale in a

way, that can be modeled as an exponential function of the

scale. Thus the exponent of the function is a good statis-

tical descriptor of the object which is invariant to a wide

range of spatial transformations. In this work we focus on

the illumination invariance property of the density map.

Let I(x) be a grayscale image and let µ(x, r) be a mea-

sure on R
2. For our purposes we choose µ(x, r) to be the

sum of image intensities in a disk of radius r around point

x i.e. µ(x, r) =
∑

‖y−x‖≤r I(y). We use the power law to

express µ as a function of r:

µ(x, r) = krd(x) (2)

log(µ(x, r)) = log k + d(x) log r (3)

d(x) = lim
r→0

log(µ(x, r))

log r
(4)
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Figure 4: Grayscale images (top row) and corresponding

density maps (bottom row). Density map is invariant to

smooth changes in intensity but responds to sharp discon-

tinuities.

We define the exponent d(x), also known as Hölder expo-

nent, to be the local density function of image I(x) at point

x. Intuitively, it measures the degree of regularity of inten-

sity variation in a local neighbourhood around point x. This

is illustrated in Figure 3. For a patch where intensity is de-

creasing from the center, the density value is less than 2, for

a patch of constant intensity, the density is equal to 2 and

for a patch of increasing intensity the density is greater than

2.

The above definition applies to continuous images. In

practice when dealing with discrete images the summation

is taken over square regions of several radii (1 to 5 pixels

in our implementation). The value d(x) is then obtained

by fitting a straight line to the points in the log(µ(x, r)) vs

log r plot and estimating the slope of that line.

Figure 4 shows examples of density maps computed on

various grayscale images. As can be seen, the density map

values are the same within regions of different intensity as

well as within regions of smoothly varying intensity. At the

same time, the edges of the square show up in the density

map. In essence, the density map preserves important textu-

ral features by responding to abrupt intensity discontinuities

and avoiding smoothly varying regions. Another important

property is its invariance to multiplicative changes in in-

tensity. A multiplicative change in intensity corresponds

to an additive change of the logarithm of the measurement

function µ, which does not affect the slope of the line in

log(µ(x, r)) vs log r plot. Thus the density map is well

suited to deal with shadows as defined in the model in equa-

tion (1). Hence we propose to use the density map as a pre-

processing technique before applying the texton approach

for texture description in images with shadows.

2.2. Shadow detection

Given a boundary in the image, we want to decide

whether it is a shadow boundary by comparing intensity,

colour and texture measurements across the boundary. The

intuition is that texture and colour can be used to decide

whether both sides of the boundary belong to the same ma-
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(b) PR curve for grayscale
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(c) ROC curve for colour
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(d) PR curve for colour

Figure 5: ROC and PR curves for shadow boundary detection on grayscale and colour images.

terial while intensity indicates if one side is darker than the

other. For each boundary pixel we align a disc of fixed ra-

dius r split in two parts, such that the two half discs lie on

different sides of the boundary, and we compute the differ-

ence of appearance features in the half discs. The orienta-

tion at a pixel is found as the direction perpendicular to the

tangent of the boundary curve.

For intensity, we calculate the mean intensities in the two

half discs and take the ratio of the bright half disc to the dark

half disc Īb/Īd. The higher this ratio, the more likely it be-

longs to a shadow boundary. Similarly, to compare colour,

we use RGB colour ratios. We take the ratios of the bright

half disc to the dark half disc R̄b/R̄d, Ḡb/Ḡd, B̄b/B̄d. We

expect each colour channel to be attenuated by the same

amount due to shadow, hence the colour channel ratios

should be approximately equal to each other. We experi-

mented with various other colour features (ratio of L*a*b

channels, histogram distance of L*a*b), but found the sim-

ple RGB colour ratios to give the best results. Finally, for

texture we compare a variety of different texture description

methods.

Intensity textons: as a baseline, we use the texton method

computed on grayscale images [13]. In our implementation,

we use a filterbank of a single scale and we don’t use the

center surround filter because it is sensitive to changes in

the average intensity. We use k = 128 textons.

Density textons: the second method is our proposed

method of computing textons on a density map. The same

filterbank parameters are used as in the case of intensity tex-

tons.

LBP: the third method is Local Binary Patterns [15] (LBP).

This method is widely used in texture classification because

of its simplicity and invariance to rotation and illumination.

Each pixel is characterized as a binary pattern, where each

digit corresponds to one of the adjacent pixels being of ei-

ther greater or smaller intensity value than the center pixel.

Thus each pixel in the image can be mapped to one such

binary string.

To compute texture dissimilarity, we compute the nor-

malized histogram of textons (or binary patterns for LBP)

in the two half discs and take the χ2 distance between them.

Once features are extracted for each boundary pixel they

are averaged to get a single feature vector describing the

boundary. These features are then used to train an SVM

classfier. Images from the shadow dataset introduced by

Zhu et al. [24] are used for training. To collect groundtruth,

we applied the Pb edge detector [13] to find strong bound-

aries and then manually labeled them as shadow, and non-

shadow. The positive set contains shadow boundaries while

the negative contains occlusion boundaries, boundaries be-

tween different materials, texture edges and surface orien-

tation boundaries.

2.3. Experiments

We conducted two experiments: one on grayscale im-

ages, where only intensity and texture features were used

(2D feature vector), and one on colour images, which used

all features (5D feature vector). For each experiment we

trained three classifiers, each with one of the three differ-

ent texture features. An SVM classifier with Gaussian RBF

kernel was used for classification. SVM parameters were

selected on a small development set and a 10 fold cross-

validation was run on the rest of the dataset. SVM scores

were calibrated to give probabilistic output. Figure 5 shows

the ROC and PR curves, and Table 1 shows the confusion

matrices for the two experiments.

Referring to figure 5, on grayscale images the density

textons achieved an accuracy of 89.51%, which is more

than 4% higher than the intensity textons. The improve-

ment comes from higher accuracy on non-shadow bound-

aries. LBP has improved non-shadow boundary classifica-

tion compared to intensity textons, but has reduced recogni-

tion rate on shadow boundaries, leading to a non-significant

overall improvement. This can be explained by the fact that

binary patterns only capture the sign of the intensity change

around the pixel whereas density textons also preserve in-

formation about the magnitude of the change, which makes

them more discriminant. Similar results are seen in colour

images. Density textons achieved best classification results,

however by a noticeably smaller margin. This is due to the



fact that both colour and texture are material cues, hence

using the colour cue leaves less room for improvement by

the texture cue. Most importantly, in both experiments den-

sity textons achieved the highest precision in low to medium

recall rates. This is important for applications that require

high confidence in classification results.

Grayscale Colour

Intensity Shadow other Shadow other

Shadow 0.911 0.089 0.949 0.051

other 0.219 0.781 0.133 0.867

Density Shadow other Shadow other

Shadow 0.927 0.073 0.946 0.054

other 0.143 0.857 0.099 0.901

LBP Shadow other Shadow other

Shadow 0.896 0.104 0.950 0.050

other 0.192 0.808 0.122 0.878

Table 1: Confusion matrices for shadow boundary classifi-

cation.

3. Shadow free segmentation

This section describes our baseline segmentation algo-

rithm, the effects of shadows on the segmentation process

and ways of dealing with them.

3.1. Segmentation algorithm

We use a segmentation algorithm similar to the Interac-

tive Graph Cuts algorithm by Boykov and Jolly [6]. Given

an image I(x, y) and some user input, we want to find all

pixels belonging to the object. This is done by formulating

a graph-based segmentation problem and finding a labeling

f that assigns a binary label fp ∈ {0, 1} to all image pixels,

such that the following energy functional is minimized:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

{p,q}∈N

Vp,q · δ(fp 6= fq) (5)

where δ(·) denotes an indicator function, Dp(fp) are the

unary weights measuring how likely is pixel p to have label

fp and Vp,q are the binary weights that measure the likeli-

hood that two adjacent image pixels have same labels. A

well known shortcoming of such energy minimization ap-

proaches is the tendency to prefer smaller segmentations or

shorter contours [19]. To deal with this problem, Misra et

al. [14] introduced an algorithm that uses a single point be-

longing to the object as user input. This fixation point is

used as a seed for the foreground, while image boundary

pixels are used for the background. The energy function is

transformed to the Polar coordinate system centered at the

fixation point. All circles of different radii centered at the

fixation point in Cartesian space have the same boundary

cost in Polar space, hence energy minimization becomes in-

dependent of boundary length. The downside is that binary

and unary weights in Polar space need to be constructed

by interpolation from Cartesian space, which leads to un-

wanted distortions. To avoid this problem, we propose to

keep the minimization in Cartesian space, and instead ”sim-

ulate” the coordinate transformation by reweighing each

edge weight Vp,q by the distance between points p and q
in the desired coordinate space. The binary term becomes:

V ′
p,q = wp,q · Vp,q (6)

We choose to simulate the Log-polar space. We have found

that in practice, it has the same scale invariant properties as

the Polar space and has a much simpler expression for wp,q .

Without loss of generality, let’s assume that our Carte-

sian coordinate system is centered at the fixation point.

Given a point (x, y) in Cartesian space, the corresponding

point in the Log-Polar space is

ρ = ln
√

x2 + y2

θ = arctan(
y

x
)

Denoting dx = xp − xq , dy = yp − yq , dρ = ρp − ρq
and dθ = θp − θq , the distance between points p and q

in the Log-polar space is wp,q =
√

dρ2 + dθ2. Using the

transformation:

(

dρ
dθ

)

=

∣

∣

∣

∣

∣

∂ρ
∂x

∂ρ
∂y

∂θ
∂x

∂θ
∂y

∣

∣

∣

∣

∣

(

dx
dy

)

(7)

we obtain that

wp,q =
1

r

√

(dx2 + dy2) (8)

where r is the distance between point p and the fixation

point in the Cartesian space. Since we are using discrete

images dx = dy = 1, hence the weighting function simpli-

fies to 1/r.

The rest of the segmentation is setup similarly to [14].

The binary weights are

Vp,q =

{

exp(−ηEpq) if Epq 6= 0

k otherwise
(9)

Epq =
Pb(p) + Pb(q)

2
(10)

where Pb(x) is the probabilistic boundary map [13], k =
20, η = 5 and λ = 1000. The segmentation process works

in two iterations. The first one only uses the edge infor-

mation. The unary weights are set for the fixation point

Dp(fp = 1) = D and the pixels at the image border

Dp(fp = 0) = D with D = 1000. The rest of the unary
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Figure 6: Segmentation process.

weights are set to zero. After the first segmentation iteration

a preliminary segmentation mask is available and we use a

GMM model with 5 components in L*a*b space to con-

struct a colour model of the foreground FBG(p) and back-

ground FBG(p). The unary weights for all points except the

fixation point and image boundary become:

Dp(fp) =

{

− ln(FFG(p)) if fp = 1

− ln(FBG(p)) if fp = 0
(11)

The image is resegmented again with the updated unary

terms to give the final segmentation.

3.2. Shadow free segmentation

Presence of shadows in the scene affects both unary and

binary weights of the energy function. Unary weights are

modified due to changes to the colour model of the shad-

owed region. Binary weights are affected due to changes

of image gradients. Strong gradients are introduced at the

boundaries of shadow region, and existing gradients are

attenuated inside shadow regions. Combinations of these

effects lead to the two most common segmentation errors

shown in Figure 1. The first one is undersegmentation,

when only part of the object is segmented due to strong self-

shadow. The second is over segmentation, when shadow

cast on the ground is included in the segmentation.

To mitigate changes to the unary weights, we use an

illumination invariant L*a*b colourspace. To deal with

changes in binary weights, we need to attenuate shadow

edges and reinforce the edge between the object and cast

shadow. An obvious approach is to find and attenuate all

shadow edges in the image. However, it is not clear how to

split the edge map into a set of non-overlapping contours. A

contiguous edge in the edge map may belong to several sur-

faces in the scene, while some edges that belong to the same

boundary in the scene may appear disconnected in the edge

map. The presence of t-junctions complicates the task even

further. Classifying individual pixels produces unreliable

results since adjacent pixels are not available to provide ori-

entation information. An alternative approach is to segment

the object first and then examine the segmentation boundary

for the presence of shadows. Since the segmentation bound-

ary is a closed curve, there are no t-junctions or missing

pixels, which makes the task of splitting the segmentation

boundary easier. Moreover, the shadow boundaries caus-

ing segmentation errors are guaranteed to be included in the

segmentation contour since both of the mistakes discussed

above involve segmenting along a shadow boundary.

Our approach proceeds as follows. First, the segmenta-

tion contour is split into segments by computing 2D con-

tour curvature and splitting at the local curvature maxima.

A shadow boundary detector presented in section 2.2 is

applied to contour segments. Shadow edges H with high

shadow probability P (shadow) > 0.8, are attenuated:

Pb(p ∈ H) = Pb(p ∈ H) ∗ 10−4 (12)

This ensures that the segmentation boundary is less likely to

go along the shadow boundaries. We know that the missing

edge between cast shadow and object will be inside the ini-

tial segmentation. We also know that the shadowed region

is likely to have a different colour from the object. Thus,

we oversegment the foreground region using the mean shift

algorithm [3] and add the edges between segments T to the

probabilistic edge map:

Pb(p ∈ T ) = Pb(p ∈ T ) + 0.1 (13)

Finally, contour segments L that have low shadow proba-

bility P (shadow) < 0.2 are likely to belong to the object,



hence we increase the corresponding unary weights which

forces these pixels to be included in the segmentation:

Dp∈L(fp = 1) = 10 (14)

Once these changes to the energy function are made, the

segmentation algorithm is run again to give the final shadow

free segmentation.

3.3. Experiments

To evaluate the performance of our algorithm we com-

posed a dataset of 53 outdoor images with objects influ-

enced by shadows. 14 images were taken from the dataset of

Zhu et al. [24], while the other 39 were collected by the au-

thors with a conventional digital camera. The ground truth

segmentation mask was manually created for each object,

and a fixation point was selected randomly within the mask.

To measure segmentation accuracy, we used the F-measure

defined as 2PR/(P + R), where P and R are precision

and recall of foreground mask relative to ground truth. We

compare the performance of four algorithms. For a baseline,

we use the segmentation algorithm described in section 3.1.

and we compare it against our shadow-free algorithm using

3 different texture descriptors (intensity textons, LBP and

density textons). All three detectors are trained on Zhu’s

dataset (images overlapping with our dataset were not used

for training). Table 2 shows the F-measure scores. It is clear

Algorithm F-measure

Baseline 0.77± 0.027

Intensity textons 0.81± 0.036

LBP 0.82± 0.039

Density textons 0.84± 0.033

Table 2: Segmentation quantitative evaluation.

that our proposed method improves segmentation accuracy

over the baseline. Cast shadow is removed completely in

most cases shown in Figure 7. Intensity texton and LBP

classifiers give a moderate improvement while the density

texton classifier increases it even further achieving 7% per-

formance boost over the baseline. This result is consistent

with the shadow classification results. Since we are only us-

ing high confidence shadow detection results, the classifier

with highest precision achieves best performance. There are

however several examples where our procedure fails to re-

move shadow from the segmentation or even degrades the

baseline segmentation (Figure 8).

4. Conclusions

We have introduced a new image preprocessing tech-

nique that improves illumination robustness of the filter-

bank based texture descriptors. We applied this technique

in the context of shadow boundary detection and showed

that it improves performance over the classical filterbank

texture descriptor as well as the LBP texture descriptor. We

used the resulting shadow boundary detector in the pro-

posed shadow free segmentation approach. Instead of find-

ing shadows everywhere in the scene we take a human in-

spired approach and only analyse the boundaries that are

relevant to the segmentation task. This enables our algo-

rithm to fix segmentation errors due to shadows reliably. In

the future we plan to extend this active approach to video

sequences where shadows are cast by the objects moving in

the scene.
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