
Who should catch (this Exception) {?}

 Walaa ElDin M. Moustafa
Department of Computer Science

University of Maryland

College Park, Maryland, USA

walaa@cs.umd.edu

ABSTRACT

In this paper, we propose a software tool that can be used to speed

up the software development lifecycle by automating the process

of assigning new bugs to developers. Open bug repositories are

now very common, and they are provided to the software users as

a means to report any bugs they find while using the software.

Many of the bugs reported complain about exceptions that are

thrown by the program during normal operation of the software.

Users report these bugs to the development team using bug

reporting tools, (e.g. Bugzilla), and as a result of that, a person

called Bug Triager tries to link between this bug and a developer

who can fix it. Sometimes, the source of the bug is unclear, and as

a result of that the developer can be reassigned several times. In

this project, we propose an approach to automate this process by

recommending developers who can fix a bug that complains from

an exception. Moreover, we provide a ranking of developers

according to their expected relationship with the bug so that more

than one developer can work on the bug if needed, or if the first

recommendation is unavailable. The approach is based on

network analysis, and uses link prediction to rank developers with

respect to a bug report. Moreover, in this report, in addition to

using link prediction, we show several applications to using

network analysis in the context of software analysis, like

importance ranking and visualization. The Eclipse open source

project was taken as a case study, and its CVS and Bugzilla

repositories were the source of the datasets used to evaluate our

approach. Experimental evaluation of the link prediction approach

for recommending developers reveals its effectiveness and shows

that its recommendations were similar to the actual bug

assignments to a far extent.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – Life cycle,

Productivity, Programming Teams.

I.2.6 [Artificial Intelligence]: learning – Concept learning.

General Terms

Management, Measurement, Human Factors.

Keywords

Version Control, Bug Repositories, Network Analysis, Link

Prediction.

1. INTRODUCTION
Software projects are consistently expanding in size, number of

developers, and number of users dealing with them. Also,

software development is spreading over more geographically

distributed environments, where developers do not necessarily

have the chance to meet. As a result of that, most state-of-the-art

software projects maintain software repositories, or version

control systems that keep track of all work and all changes done to

project files, and allow several developers, potentially widely

separated in space and/or time, to collaborate. On the other hand,

as software projects become larger, software quality becomes a

central concern. Therefore, the software development process

involves different procedures for quality assurance, including

static analysis, in-house software testing, in-field software testing,

and bug tracking systems. Bug tracking systems are particularly

interesting because they allow the software users to submit any

negative experience with the software that looks like a bug, and

notify the developers about it so that the bug can be fixed. In this

paper, we are interested in analyzing information in version

control systems, and information in bug tracking systems. We

believe that these are very valuable information sources that not

only record the state of the software, but also can reveal very

useful information, if well handled and analyzed. In this paper, we

are proposing a software tool that can be used to speed up the

software development lifecycle by automatically assigning new

bugs that complain about exceptions to the appropriate

developers. This tool extracts CVS information regarding source

code change history, and applies network analysis techniques on

the extracted information, to infer rankings of all the developers

with respect to their relationship with different methods in the

source code. Link prediction techniques, which are a set of well

established methods in network analysis, are used to obtain these

rankings. For finding the ranking on the exception level, rather

than the method level, method-level rankings are leveraged to

compute rankings for developers with respect to all the methods

that are reported in the exception. Moreover, in this paper, we

also show several applications to network analysis in the context

of software project analysis rather than developer

recommendation. These applications include techniques for

computing importance ranking, and visualization of the

information extracted from CVS. We show that network analysis

approaches are effective in understanding and mining new

information about a software project. The rest of this paper is

organized as follows. In section 2, we discuss the relevant

background regarding version control systems and bug reporting

tools, and focus on two popular tools, CVS and Bugzilla. In

section 3, we discuss how to extract useful information form CVS,

and show a way to get more semantic-oriented information about

the source code changes, rather than pure text-based difference

information that are supported directly by CVS. In section 4, we

discuss how to employ the information extracted from CVS to

construct a network that represents the relationship between the

source code and the developers. In section 5, we show some

applications for the network representation including importance

ranking, visualization, and discovering collaborations. In section

6, we discuss the different methods of link prediction in dynamic

network analysis, and show how we employed link prediction to

rank developers with respect to methods. In section 7, we show

how to utilize method level rankings to create exception level

rankings. In section 8, we show experimental evaluation of our

approach. In section 9, we discuss related work. In section 10, we

conclude by summarizing our work, and discussing possible

future directions.

2. CVS and Bugzillas
In this section we will give brief and relevant background about

version control systems, and bug reporting tools, focusing on

CVS [1] and Bugzilla [2] as case studies.

2.1 Version Control Systems
Version Control Systems are commonly used in software

development to manage ongoing development of relevant project

files as application source code, documentation files and other

information that may be worked on by a team of people. Most

recent versions of the project files are stored in a central

repository, and developers can check out copies of these files into

their local workspaces, so that they can work on them, make

changes, and apply these changes (commit) to the versions in the

repository. Changes to these documents are usually identified by

incrementing an associated number, termed the “revision

number”, and associated historically with the person making the

change. A simple form of revision control, for example, has the

initial version of a source code file assigned the revision number

“1”. When the first change is made, the revision number is

incremented to “2” and so on [3]. Version control systems not

only provide complete access to information about all the changes

that took place in the project, but it also allows for full control

over these changes, and allow developers to revert back a change,

and go backward to an older revision if needed. Version control

systems store different revisions in a compressed way, where only

the differences from the previous revision are stored for a given

revision. In addition to the information stored about files, their

revisions, and the exact changes in each revision, version control

systems store information about the developer that made a

particular change, and the timestamp of that change. A very

commonly used software tool for version control is Concurrent

Versioning System, or CVS. CVS supports all of the features we

have just discussed. For example, the command CVS log, shows

all the files that are currently in the source tree, along with their

all revision numbers since the file was initially created and the

developers that created each revision, along with the timestamp of

the change. The command CVS diff takes two revision numbers

as a parameter, and returns text-based differences between the two

revisions. This is usually not helpful in analyzing differences on

the level of source code, because when analyzing source-code-

level differences, we are more interested in finding semantic

differences. For example, we may be interested in finding which

methods have been changed in a class, what data members have

been added, or which classes had their access qualifiers changed,

while we might not be interested in information about adding or

deleting comments, or in changing the location of a function

definition inside the file. Therefore, it is important to find a more

meaningful way to analyze source code differences that can

express more than naive text differences. The last CVS command

that we are going to discuss is CVS update, which is given a

revision number, and it synchronizes the local working copy with

that revision, so that the developer can control which revision

resides in his/her local working copy.

2.2 Bug Reporting Tools
Many open source software projects utilize bug tracking tools as a

means of reporting software bugs, assigning them to developers,

and monitor their state. Many of bug repositories store the

information about bugs and their state in a public database that is

accessible to all users through a web interface. Therefore, bug

tracking tools in that sense are also a means of interaction

between developers and the user community that can be

geographically distributed. Users report bugs they find in the

software, and discuss open issues with the developers.

When a new bug is reported, the bug is assigned a bug ID by the

system, and the bug reporter is allowed to submit an elaborate

description of the bug, so that it can be reproduced by the

developer who will fix this bug. Information is recorded in the

bug report about who the reporter is, the creation time, the

component, the operating system and the version. In addition to

this information that is collected at bug creation time, there is also

information that occurs over the life time of the bug, like the

developer to whom the bug is assigned, other people that will be

on the communication list when discussions about the bug take

place, and the state of the bug, whether still pending, fixed, or

cannot be resolved.

When a bug report is submitted to the bug repository, its status is

set to NEW. The bug then is examined by a bug triager, who

assigns the bug to the appropriate developer, and the bug status is

then set to ASSIGNED. When the bug is fixed, its status is set to

FIXED. When the bug is found to be a duplicate of another

existing bug that has been already reported, this bug is reported as

DUPLICATE. If the bug cannot be fixed, it is marked as

WONTFIX. Figure 1 shows the web interface for the Eclipse

project Bugzilla repository for Bug ID 178190 as an example.

3. CVS Information Extraction
In this section we describe how to obtain structured information

from CVS that describes change history on both the file level and

method level. File level changes are supported by CVS through

the command “CVS log”. The output of this command can then

be processed and stored in a database relation that has the fields

(file name, revision id, developer name, date of change, time of

change, number of lines changed). On the other hand, CVS does

not support a direct way for finding method level changes.

Therefore, special techniques have to be employed to obtain this

kind of information. Note that the command “CVS diff” will not

help much, because it returns only text differences between two

files. It actually treats two files as sequences of characters, even if

they contain source code. Therefore, in the following subsection,

we will discuss our approaches for finding function-level

differences in source code, and then show our proposed approach.

3.1 Method-level difference analysis
Java fact extractor [4] is a software tool that has the capability of

parsing both the class files and Java source files in order to extract

information about class and method signatures. Extracting

information from a Java source file involves implementing almost

all the functionality of a Java source compiler. It also involves

completely understanding the language semantics. This scheme

works very well to gather course grained information about the

class file, its methods modifiers and member variables. However,

it fails to capture information from the method bodies, which is an

essential requirement in our analysis. Moreover, Java fact

extractor is not a differencing tool, which implies that extra steps

are required in order to compare different outputs of Java fact

extractor.

JDiff [5] is an open source differencing tool that generates HTML

reports of all the packages, classes, constructors, methods, and

fields which have been removed, added or changed, when two

APIs are compared. This is very useful for describing exactly what

has changed between two releases of a product. Only the API

(Application Programming Interface) of each version is compared.

Therefore, like Java Fact Extractor, it does not support detecting

differences on the level of method bodies, and will report methods

that have the same signatures as identical, even if they implement

different functionalities.

Eclipse Compare plugin is a tool that ships with the Eclipse IDE.

It is used to find structural differences between two files. That

means that it is capable of finding differences on different levels,

i.e. classes, constructors, fields and methods. Since Eclipse is an

open source project, the Compare module itself can be obtained

and used in isolation of Eclipse to compare Java files. An

advantage of this tool is that it focuses more on structural

differences. That means that changing method location inside the

file will not affect the comparison. However, a drawback of using

this tool is that it pays attention to source code formatting

differences. For example, an “if” statement that is written on one

line will be different from the same “if” statement that is written

on two lines.

A technique for supporting source code difference analysis was

proposed by Maletic et al [6]. In this technique, source code files

are converted to the srcML language [7]. The representation,

srcML, is an XML format that explicitly embeds abstract syntax

within the source code while preserving the documentary structure

as dictated by the developer. A drawback of using such an

approach is that the srcML representation preservers the

documentary structure of the source code. Therefore, it will be

affected by many minor and unimportant changes, like

whitespaces, whether composite statements are written on one line

or more, whether comments are written in the backslash notation

or in the star notation, and so on.

3.2 Proposed approach for method level

changes
The technique that we propose for solving our problem is by

using an XML representation of the source code files; however,

by employing compiler output information, rather than source

code text information. Therefore, we used the JavaML [8]

language to represent the source code files we have, and used the

tool Java2XML [9] to perform the conversion. Using this

approach has many advantages. It is not sensitive to source code

“format”, or the location of functions inside the source code.

Furthermore, comments can be easily ignored. Also, using XML

as a representation in general allows performing XSLT

transformations and XPATH queries on the output XML output.

Once source files are converted to XML, XPATH can be used to

query the XML output for the contents of the <method> tag that

represents methods information. For CVS analysis purposes, this

approach can be applied for each two consecutive versions of a

file and then the information can be stored in a database relation

that has the fields (file name, revision number, class name,

different method).

Figure 1: Bugzilla bug report example for Eclipse

By applying the approaches mentioned above for both file level

and method level differences on the Eclipse CVS repository for

the JDT module, we found that the repository contains about

200,000 different revisions (and each revision has a group of

method differences as well). Therefore, comparing pairs of

revisions by converting each revision to XML first would take a

very long time on such a big dataset. Therefore, we focused only

on the changes done during the year 2007. This reduced the

dataset size, so that it had 2871 revisions totaling 5978 method

differences.

4. Network Construction
In order to be able to use network analysis approaches on the

information extracted from CVS, a network that expresses the

relationship between developers and the methods, and also the

methods and themselves should be constructed. Therefore, we

constructed a network that has the project developers and all the

methods in the source code as nodes. Such kind of networks that

contains more than one node type is called multimodal networks.

In order to construct the network links, we use the information

extracted from CVS, to link each developer with the methods

he/she changes. We also link methods that change together in the

same time to represent relationship between methods. When we

say that we group methods based on the change time and the

developer, we mean that methods that have been changed on the

same day by the same developer are considered related to each

others and we link them together in the constructed network.

5. Network Analysis
In this section we section we discuss some of the results we

observed from analyzing the network constructed as described in

the previous section. We first start by developer importance

ranking, then by method importance ranking and finally, we show

a way for visualizing the information extracted and extracting

useful information from the visualization.

5.1 Developer Importance Ranking

A measure of importance that is usually used in network analysis

is betweenness centrality [10]. Betweenness centrality is a

measure of a node within a graph. Nodes that occur on many

shortest paths between other nodes have higher betweenness than

those that do not.

For a graph G: = (V,E) with n nodes, the betweenness CB(v) for

node v is:

where σst is the number of shortest geodesic paths from s to t, and

σst(v) is the number of shortest geodesic paths from s to t that pass

through a node v. This may be normalised by dividing through by

the number of pairs of nodes not including v, which is (n − 1)(n −

2).

Calculating the betweenness centrality of all the vertices in a

graph involves calculating the shortest paths between all pairs of

vertices on a graph. This takes Θ(V3) time with the Floyd–

Warshall algorithm. On a sparse graph, Johnson's algorithm may

be more efficient, taking O(V2logV + VE) time.

Therefore, we rank developers according to the betweenness

centrality measure. Such a measure should reveal information

regarding which developers are more involved in the JDT

development more than others, and which developers work on

broad topics and which work on specific ones. We show the

rankings in Table 1 along with the score of each developer (the

ordering is row-major). Figure 2 shows the distribution of

developer scores. It can be observed that few developers have

very high centrality, with large gaps between them, then the

centrality drops very sharply with less gaps.

In order to validate these results, we contacted the developers

themselves, and asked them questions about their role in the

software, and how would they rank themselves among all the 14

developers in terms of their overall interaction and knowledge of

different project pieces. The developer who was ranked second by

our measure, responded that he would reply as soon as he gets

some time, because he was in a delivery rush (pretty busy!). One

developer ranked the UI module team developers according to

their interaction with the entire project, and mentioned that the

ranking is maeschli , dmegert , mkeller and bbaumgart, which is

the same ranking like ours, except for mkeller’s rank. The least

ranked developer in our measure, responded by that he did not

want to answer the question, when we asked him about his belief

of his rank.

Developer Score Developer Score

daudel 5899005 oliviert 4351020

ffusier 2946859 wharley 1394260

jeromel 1359807 pmulet 834203.4

mdaniel 387839.4 kent 248123.7

erjodet 237345.3 jgarms 48562.5

mkeller 42813.29 maeschli 28059.27

dmegert 13289 bbaumgart 330.25

Table 1. Developer centrality measure

Figure 2: Developer centrality distribution

5.2 Method Importance Ranking
As we ranked developers according to their centrality, we can also

rank methods according to their centrality. Such a ranking would

reveal information about which methods are “broker methods”, or

methods that connect different parts of the program together.

Table 2 shows the names of the 20 highest ranked methods, and

Figure 2 shows the distribution of their centrality score. We can

observe two interesting results. First, 19 out of the 20 methods are

testing methods. This result coincides with the proposition we

have just mentioned, regarding the interpretation of method

centrality, where we stated that central methods are the broker

methods that connect different parts of the program together.

Actually, this is exactly what testing suits are doing [11, 12, 13,

14]. Good testing suits are the ones that achieve higher code

coverage, and, hence, have relations to many of other program

functionalities. A future study can look at how to achieve test

prioritization using these ranking results. The second interesting

result is that the distribution of the ranks follow a similar pattern

to the distribution of the developer ranks, where there are few

methods at the top which are very central, followed by other

methods that are much less central than the higher ones. However,

the degradation is not as sharp as it is in the case with developer

rankings.

Method Rank

ResolveTests.testDuplicateTypeDeclaration7 1

JavadocTypeCompletionModelTest.test024 2

CompletionTests2.testChangeInternalJar 3

CompletionTests2.testBug91772 4

JavadocPackageCompletionModelTest.test025 5

JavadocMethodCompletionModelTest.test139 6

JavadocPackageCompletionModelTest.test031 7

JavadocPackageCompletionModelTest.test024 8

JavadocMethodCompletionModelTest.test038 9

ASTConverterTest2.test0607 10

TestUtils.convertToIndependantLineDelimiter 11

CompletionParserTest2.test0156_Method 12

JavadocTest_1_5._testBug209936 13

ASTConverterTest2.test0608 14

BuildpathTests.testMissingLibrary2 15

BuildpathTests._testMissingLibrary3 16

BuildpathTests._testMissingLibrary4 17

ErrorsTests.test0104 18

InnerEmulationTest.test125 19

VariableElementImpl.hides 20

Table 2. First 20 methods with highest betweenness centrality

Figure 3: Method centrality distribution

5.3 Visualization
Having constructed a network, a useful way of analyzing it is

simply by visualizing this network. However, it becomes

prohibitive to visualize networks when the size of the network

becomes quite large, like the case under study in this paper.

Therefore, it becomes important to find a way to summarize the

information in the network, and come out of a smaller network

that conveys the most important concepts that exist in the original

network. One way of summarizing networks is by filtering out

unimportant nodes from it [15]. Therefore, we used the

betweenness centrality measure, and removed low ranked nodes

from the graph, so that the information about important nodes can

be captured quickly. Figures 4 and 5 show two cases where we

show only the network containing only the most important 20 and

100 nodes respectively. We removed relationships between

methods to aid clearer visualization of links between methods and

developers, and hence, focus on information like developer

collaboration information. We also used node ranks rather than

names to have an idea about the ranks of the nodes collaborating

together. We can see in Figure 4 that developers D1 and D2 are

collaborating, and also we can see the methods they are

collaborating on. In Figure 5, we can see more collaborations than

the ones observed in Figure 4. Some examples are between D2

and all of D6, D7, D3, D1,D4, and also between D3 and both of

D6 and D5.

6. Link Prediction
As we mentioned earlier, we use link prediction to predict the

relationships between developers and the methods in the source

code. Link prediction [16] is a set of techniques in network

analysis that predict future link formation in a network, given the

network structure at the present time. Most of the techniques for

link prediction leverage the network structure information to find

the predictions. All the methods assign a connection weight

score(x, y) to pairs of nodes x and y, based on the input graph,

and then produce a ranked list in decreasing order of score(x, y).

Thus, they can be viewed as computing a measure of proximity or

“similarity” between nodes x and y, relative to the network

topology.

There are several methods for calculating the node proximity. The

simplest approach to find score of two nodes x, y is to calculate

the shortest path between x and y. However, since we prefer

higher scores, then we use the negated length of the shortest path.

But in this approach, all links that share only one neighbor will

have higher scores than others. Newman [17] studied the problem

of link prediction in the context of scientific collaboration, and he

found that the probability of scientists collaborating together

increases with the number of other collaborators they have in

common. Therefore, he proposed the scoring function:

where Γ(x) are the neighbors of node x. Adamic/Adar measure

[18] is a measure that counts the common neighbors as well;

however, it gives more weight to rare neighbors that are shared

with only few other nodes. Therefore, the scoring function is:

Another measure by Newman [17] is preferential attachment,

which is again in the context of scientific collaboration, and states

that the probability of co-authorship of x and y is correlated with

the product of the number of collaborators of x and y. The scoring

function for that measure is:

Other methods for link prediction include Hitting Time, Rooted

PageRank, SimRank [19], Unseen Bigrams, and clustering.

The last link prediction measure that we will discuss is the Katz

measure [20], which we used for our link prediction purposes.

Katz defines a measure that directly sums over the collection of

paths between two nodes x and y, exponentially damped by length

to count short paths more heavily. This leads to the measure:

where
,

l

x ypaths is the set of all length l paths from x to y. (A very

small β yields predictions much like common neighbors, since

paths of length three or more contribute very little to the

summation.) An interesting property of the Katz measure is that

the matrix of scores is given by (I – βM)-1 – I, where M is the

adjacency matrix of the graph. However, in order for the Katz

measure to converge, β should be less than the reciprocal of the

largest Eigen value of the adjacency matrix. In our Eclipse CVS

network, by computing the Eigen values of the adjacency matrix,

we found that the largest Eigen value is 54.2. Therefore, we set β

to 0.018, which is the maximum beta less than the reciprocal of

the largest Eigen value.

Having obtained the link prediction matrix, we can sort the scores

of developers for each method, by extracting the sub matrix

scores(x,y) where x ∈ methods and y ∈ developers. We will call

this matrix canFixMethod(x,y). Therefore, for each x ∈ methods,

we sort the vector canFixMethod(x) to obtain a ranking on the

developers who can work on or fix this method.

7. Who should catch this Exception?
Given an exception that is reported in a Bugzilla bug, we try to

match this exception with a developer who can fix it. For that

purpose, we employ ranking information obtained by link

prediction as discussed in the previous section to calculate an

overall ranking for the developers, with respect to the whole

exception. Since the exception is a trace of methods that were

active in the call stack when the exception took place, it is

reasonable to obtain the ranking based on the average developer

score over all the functions that show up in the exception trace.

Therefore, the score canFixException(z,y) of a developer y to fix

an exception z is:

1

(,)

(,)

n

i

i

canFixMethod m y

canFixException z y
n

=

=

∑

where the methods m1, m2 … mn are the methods that appear in the

exception z stack trace. By sorting the vector canFixException(z)

we obtain a ranking on developers who can this exception.

Figure 5: Collaboration graph for the top most 100 important

nodes

Figure 4: Collaboration graph for the top most 20 important

nodes

8. Evaluation
Figure 6 shows an example of using the proposed tool. In the top-

left textbox, the user inputs a Bug ID that she wants to find

recommendations for. To the right, if the bug was already

assigned to a developer, the developer’s name and email are

shown, and also all other the information about other people that

were on the communication list during the discussions about that

bug. In the bottom half of the user window, appears the methods

that the tool can provide a ranking for, which are basically any

methods that exist in the network constructed, and also one more

entry that expresses the overall exception recommendation. As we

can see in the figure, the user asks for recommendation for the

bug report 178190. This is the same bug shown in Figure 1. The

tool shows the bug description, and the person who was assigned

that bug, Markus Keller, and people who were on the

communication list, J M Synge, and Martin Aeschlimann. In the

second half, the user is allowed to select the method that she is

interested in seeing its individual rankings, and also the user is

allowed to see the overall ranking based on all the methods. This

should be a ranking for people that can work on that bug. As we

can see from the figure, the tool names Martin Aeschlimann as the

first recommendation, who was listed on the CC list, and Markus

Keller as the second recommendation, who was actually assigned

the bug. Furthermore, the tool recommends other developers in

the order of their ranks so that they can be picked subsequently if

needed.

We collected from Bugzilla all the bugs that took place over the

year 2007. Out of them, we found the bugs whose any of their

methods was encountered in our social network analysis. There

are 16 bugs of this kind. By computing the average ranking as

recommended by our tool for the developers who actually fixed

these bugs, we found that the average ranking is 2.4, which

indicates that the developers who actually solved the bugs were

ranked pretty high by our tool. By considering both ranking of the

developers who fixed the bug and the developers on the CC list,

the average rank of them became 2.9. The reason for the average

increase is that now there are multiple persons who are working

on a single bug. Therefore, in addition to the person that is ranked

number 1, other persons will take ranks more than 1, and may be

more, according to the number of people who were actually in

both the “Assingned to” and “CC” list.

9. Related Work
Three types of approaches have been used to recommend experts

for a software development project: heuristic-based (e.g., [22]),

social network-based (e.g., [25]) and machine learning-based

(e.g., [26]).

Heuristic-based approaches apply heuristics measures to quantify

experience. Some approaches require users to maintain profiles

that describe their area of expertise or organizational position (i.e.,

[21]). However, as expected, it is difficult to keep such profiles

up-to-date. Other heuristic-based expertise recommenders are

based solely on data extracted from the archives of the software

development. The Expertise Locator system [22] uses file

dependency matrix that keeps track of how many times pairs of

files are changed together, as well as file authorship matrix, that

keeps track of how many times developers change different files,

to come up with the experience matrix, that shows how much two

developers can benefit from each others. The Expertise Browser

(ExB), for example, uses the concept of experience atoms (EA),

which are basic units of experience, as the basis for

recommending experts [23]. Experience atoms are found by

mining software repositories for the changes along with their

associated information like the developer name, the file

containing a modification, the technology used, the purpose of the

change and/or the release of the software. A simple counting of

experience atoms for each domain in question is then used to

Figure 6: Screen shot of the proposed tool

determine the experience in that area. As another example, the

Expertise Recommender (ER) [21] was proposed as method for

finding experts based on the developers change history. The

authors assume that the most appropriate developer for a module

is the one who changed it last. Girba et. al. [24] used line-level

approach for locating experts. The authors assumed that each

developer has an amount of experience proportional to the

number of lines she changed. However, this measure is not always

accurate and not indicative of the experience. For example, some

changes are done in a batch manner, or sometimes just add few

comments. Social network approaches have been addressed as

well. The approaches describe relationships between developers

built using data mined from the system development. For

example, in [25] the authors are studying the open source project

development phenomena using a social network approach, where

they link two developers if the collaborate on the same project.

They find that this collaboration network follows a power law

distribution, and there are few developers who are working on

multiple projects. Machine learning-based approaches used text

categorization techniques to characterize find developers who

should fix a bug [26]. In these approaches, existing bug reports

along with their bug assignments are given to a text categorization

algorithm, so that future bug reports can be predicted for their

appropriate developer who should handle them. This approach is

different than ours in that we do not train our system on existing

but reports, rather, we train it on information that already exists in

the software project repository.

10. Conclusions
In this report we have studied approaches for applying network

analysis methods on information extracted from source code

repositories. First, we have seen an approach for how to get

semantic differences between different versions of the source

code. Then we utilized the information extracted regarding

method level differences to construct a network of relationships

between the developers and the methods on one hand, and the

methods and themselves on the other hand. We also showed

techniques for analyzing this network by ranking, visualization

and link prediction. Lastly, we showed how link prediction can be

employed to predict who the developers are that can fix an

exception. Experimental evaluation showed that network analysis

is a powerful tool to promote the understanding of software

projects, and that link prediction approaches are effective methods

for finding experts. Future directions include validating the

developer rankings by contacting the developers themselves, and

exploring their work nature. Also, we will consider using method

ranking to aid test prioritization. Furthermore, from the network

construction point of view, we will consider the enriching the

network’s link structure by adding links between methods that call

each others, or methods that are in the same class. Moreover, an

improvement to the accuracy can be preformed by making use of

previous bug reports by linking them to the developers who

actually fixed them, and predict developers who should fix new

bugs. From the computational point of view, we will consider

expanding the system so that it can incrementally be updated

when new data comes to the scene. As we have seen, the data sets

are huge, and doing the entire analysis every time new

transactions take place will be prohibitive.

11. References
[1] CVS Project Homepage http://www.nongnu.org/cvs/

[2] Bugzilla Project Homepage http://www.bugzilla.org/

[3] Wikipedia article

http://en.wikipedia.org/wiki/Revision_control

[4] Java Fact Extractor

http://www.swag.uwaterloo.ca/javex/index.html

[5] JDIFF Tool Project Homepage

http://javadiff.sourceforge.net/

[6] Jonathan I. Maletic, Michael L. Collard: Supporting Source

Code Difference Analysis. ICSM 2004: 210-219

[7] M. Collard. Addressing source code using srcml. In IEEE

International Workshop on Program Comprehension

Working Session: Textual Views of Source Code to Support

Comprehension (IWPC’05), 2005

[8] G.J. Badros, "JavaML: A markup language for Java source

code," Proc. Int'l WWW Conference, May 2000.

[9] https://java2xml.dev.java.net/

[10] M. E. J. Newman, The structure and function of complex

networks, SIAM Review 45 , 167-256 (2003).

[11] Coward, P. "A review of Software Testing", Information and

Software Technology, Vol. 30, no. 3 April 1988, pp. 189-

198.

[12] Laprie, 1.-C., Dependability: Base Concepts and

Terminology, vol. 5 in the Series on Dependable Computing

and Fault-Tolerant Systems, Springer-Verlag, Austria, 1992.

[13] Howden, W., Reliability of the Path Analysis Testing

Strategy, IEEE Trans. Software Eng. SE-2 (1976), pp. 208-

215.

[14] Howden, W., Functional Program Testing and Analysis,

McGraw-Hill, 1987M. E. J. Newman, The structure and

function of complex networks, SIAM Review 45 , 167-256

(2003).

[15] Adam Perer, Ben Shneiderman: Balancing Systematic and

Flexible Exploration of Social Networks. IEEE Transactions

on Visualization and Computer Graphics (InfoVis 2006).

12(5): 693-700 (2006)

[16] David Liben-Nowell, Jon M. Kleinberg: The link prediction

problem for social networks. CIKM 2003: 556-559

[17] M. E. J. Newman. The structure of scientifc collaboration

networks. Proceedings of the National Academy of Sciences

USA, 98:404-409, 2001.

[18] Lada A. Adamic and Eytan Adar. Friends and neighbors on

the web. Social Networks, 25(3):211{230, July 2003.

[19] Glen Jeh and Jennifer Widom. SimRank: A measure of

structural-context similarity. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, July 2002.

[20] Leo Katz. A new status index derived from sociometric

analysis. Psychometrika, 18(1):39-43, March 1953.

[21] D. W. Mcdonald and M. S. Ackerman. Expertise

recommender: a flexible recommendation system and

architecture. In Proc. of CSCW, pages 231–240, 2000.

[22] Shawn Minto and Gail C. Murphy. Recommending emergent

teams. MSR 2007.

[23] A. Mockus and J. D. Herbsleb. Expertise browser: a

quantitative approach to identifying expertise. In Proc. of

ICSE, pages 503–512, 2002.

[24] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How

developers drive software evolution. In Proc. of IWPSE,

pages 113–122, 2005.

[25] G. Madey, Freeh, V., and Tynan, R. "The Open Source

Software Development Phenomenon: An Analysis Based on

Social Network Theory". Americas Conference on

Information Systems (AMCIS2002). Dallas, TX, 2002. pp.

1806-1813

[26] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In Proc. of ICSE, pages 361–370, 2006.

